
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

A QUANTITATIVE MODEL FOR ASSESSING VISUAL
SIMULATION SOFTWARE ARCHITECTURE

by

Robert W. Harder

September 2011

Dissertation Supervisor: Rudolph Darken

This dissertation was done at the MOVES Institute
Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 2011

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE: A Quantitative Model for Assessing Visual
Simulation Software Architecture

5. FUNDING NUMBERS

6. AUTHOR(S): Robert W. Harder

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9.SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES: The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol Number: NA

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
The U.S. military is the largest single user of simulation in the world, and our visual simulations can be software-
intensive systems with a lifespan of many years. Managers of these simulations need tools to help them make
better decisions at the architectural level. Currently, no such quantitative models with supporting metrics exist for
this purpose. There are properties that are held as positive characteristics in visual simulation architectures. Visual
simulation architectures can be distinguished from one another based on three characteristics: (1) openness, as defined
by the use of standards, licensing, and support of innovation; (2) reuse, as defined by the potential of being used in
subsequent projects; and (3) agility, as defined by the ease with which software can be integrated, reconfigured, or
repurposed. In this research, we propose quantifiable models to measure openness, reuse, and agility, and claim
that the models adequately distinguish visual simulation frameworks from one another. Furthermore, we claim that
these models can enhance military acquisition decisions. The results show that application of the metrics offers a
level of granularity that is useful in identifying key differences in simulation frameworks that could have profound
downstream implications.

14. SUBJECT TERMS
software metrics, visual simulation, architecture, frameworks, openness, reuse, reusability,
agility, components

15. NUMBER
OF PAGES
143
16. PRICE CODE

17. SECURITYCLASSIFICATION
OF REPORT
Unclassified

18. SECURITYCLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITYCLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

A QUANTITATIVE MODEL FOR ASSESSING VISUAL SIMULATION
SOFTWARE ARCHITECTURE

Robert W. Harder
Major, United States Air Force

B.S., Oregon State University, 1998
M.S., Air Force Institute of Technology, 2000

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN
MODELING, VIRTUAL ENVIRONMENTS, AND SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL
September 2011

Author: Robert W. Harder

Approved By: Rudy Darken
Professor of Computer Science
Dissertation Supervisor

Ted Lewis
Professor of Computer Science

Richard Riehle
Professor of Practice
Software Engineering

Arnold Buss
Research Associate Professor
of MOVES

LtCol Jeff Boleng, PhD
Associate Professor of Computer Science
U.S. Air Force Academy

Approved By: Mathias Kölsch, Chair, MOVES Academic Committee

Approved By: Peter Denning, Chair, Department of Computer Science

Approved By: Douglas Moses, Vice Provost for Academic Affairs
iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The U.S. military is the largest single user of simulation in the world, and our visual simu-

lations can be software-intensive systems with a lifespan of many years. Managers of these

simulations need tools to help them make better decisions at the architectural level. Cur-

rently, no such quantitative models with supporting metrics exist for this purpose. There are

properties that are held as positive characteristics in visual simulation architectures. Visual

simulation architectures can be distinguished from one another based on three characteris-

tics: (1) openness, as defined by the use of standards, licensing, and support of innovation;

(2) reuse, as defined by the potential of being used in subsequent projects; and (3) agility,

as defined by the ease with which software can be integrated, reconfigured, or repurposed.

In this research, we propose quantifiable models to measure openness, reuse, and agility,

and claim that the models adequately distinguish visual simulation frameworks from one

another. Furthermore, we claim that these models can enhance military acquisition deci-

sions. The results show that application of the metrics offers a level of granularity that is

useful in identifying key differences in simulation frameworks that could have profound

downstream implications.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. INTRODUCTION . 1
A. Thesis and Problem Statements . 1

B. Background . 1

C. Organization of this Document . 4

II. LITERATURE REVIEW . 7
A. Openness . 8

1. What is Openness? . 8
a. Standards . 8
b. Licensing . 9
c. Innovation . 11

2. Why Openness is Important 12
a. Benefits . 12
b. Mandates . 16

3. How Openness is Measured 17
4. Summary of Openness . 18

B. Reuse . 19
1. What is Reuse . 19
2. Why Reuse is Important . 20

a. Benefits . 20
b. Mandates . 21

3. How Reuse is Measured . 22
4. Summary of Reuse . 26

C. Agility . 27
1. What is Agility . 27
2. Why Agility is Important . 27

a. Benefits . 28
b. Mandates . 28

3. How Agility is Measured . 29
4. Summary of Agility . 29

D. Summary of Literature Review . 30

III. OPENNESS . 31
A. Developing the Openness Model . 31

1. Layers and Operations . 31

vii

2. Issues . 34
3. Criteria . 35

a. Standards . 35
b. Licensing . 36
c. Innovation . 37
d. Summary of Criteria 37

4. Model for Assessing Openness 39
5. Weights for User Assigned Value Systems 40

B. Study 1: Assessing Openness . 40
1. Methodology . 41
2. Delta3D . 41
3. DMZ . 43
4. Identifying Software Layers 46
5. Applying Criteria . 47

a. External Applications 47
b. Internal Applications 48
c. Middleware . 50
d. Kernel . 52

6. Results . 54
7. Insights Gained . 56

a. External Applications 56
b. Uniformity Across Operations 56
c. Open Source License 57

C. Summary . 57

IV. REUSE . 59
A. Developing the Reuse Model . 59

1. Complexity, Coupling, and Cohesion Metrics 59
a. Weighted Methods per Class 60
b. Depth of Inheritance Tree 61
c. Number of Children 62
d. Coupling between Objects 62
e. Response for a Class 63
f. Lack of Cohesion in Methods 64

2. Empirical Evaluation of Metrics 65
3. Criteria for Metrics . 67

a. Weighted Method Complexity 68
b. Depth of Inheritance Tree 68
c. Number of Children 68
d. Coupling between Objects 69
e. Response Set for a Class 69

viii

f. Lack of Cohesion in Methods 69
g. Summary of Reuse Criteria 69

4. Model for Assessing Reuse 70
5. Weights for User Assigned Value Systems 70

B. Study 2: Assessing Reuse . 71
1. Methodology . 72
2. Calculating the Metrics . 72
3. Applying the Criteria . 72
4. Results . 77

a. Weighted Methods per Class 78
b. Depth of Inheritance Tree 79
c. Number of Children 80
d. Coupling between Objects 82
e. Response for a Class 83
f. Top 100 Classes . 83

C. Summary . 87

V. AGILITY . 89
A. Developing the Agility Model . 89

1. Measuring Agility . 89
a. Included Files . 90
b. References . 91

2. Model for Assessing Agility 91

B. Study 3: Assessing Agility . 92
1. Methodology . 92
2. Results . 93

a. Dramatic Differences 93
b. Includes vs. References 95
c. Absolutes vs. Percents 96

C. Summary . 96

VI. CONCLUSION . 97
A. Review . 97

B. Discussion . 98
1. Choice of Models . 98
2. Additional Agility Metric . 99
3. Uniformity of Design . 101
4. Helping the Three Program Managers 102

C. Conclusions . 104

ix

D. Future Work . 105

A. APPENDIX . 107
A. Scripts for Calculating Reuse Metrics 107

1. Parent Script . 107
2. Converting Reports . 108
3. Running Perl Scripts . 109
4. Merge CSV . 110

B. Scripts for Calculating Agility Metrics 112
1. Lines with Includes, LI . 112
2. Classes with Includes, CI . 112
3. Lines with References, LR 112
4. Classes with References, CR 112

LIST OF REFERENCES . 115

INITIAL DISTRIBUTION LIST . 123

x

LIST OF FIGURES

Figure 1. Open Technology Development Roadmap Plan recommendations . . . 14
Figure 2. Software layers for smartphones . 32
Figure 3. An openness model for smartphones 33
Figure 4. Delta3D game engine banner . 42
Figure 5. Two Delta3D development tools . 43
Figure 6. DMZ game engine banner . 44
Figure 7. Comparison of weighted ratings for standards 55
Figure 8. Comparison of weighted ratings for innovation 56
Figure 9. McCabe cyclomatic complexity . 60
Figure 10. The two frameworks differ with respect to reuse. 78
Figure 11. Number of classes per framework plotted by WMC 79
Figure 12. Number of classes per framework plotted by DIT 81
Figure 13. Number of classes per framework plotted by NOC 82
Figure 14. Number of classes per framework plotted by CBO 84
Figure 15. Number of classes per framework plotted by RFC 85
Figure 16. Top 100 classes sorted by highest metric values 86
Figure 17. Agility results by lines of code and classes 94
Figure 18. Relative effort estimated to swap out rendering engine 95
Figure 19. Analogy for objects and components 99
Figure 20. Correlation of entropy to coupling 101
Figure 21. Weights for different projects applied to the frameworks 103

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

LIST OF TABLES

Table 1. Software needs for different acquisition program types 4
Table 2. Researchers’ quotes regarding reusability 24
Table 3. Sampling of over eighty software metrics 25
Table 4. Summary of openness criteria . 38
Table 5. An openness model for simulation frameworks 39
Table 6. Delta3D namespaces and size . 42
Table 7. DMZ directories and size . 45
Table 8. Sample Class Names for Two Frameworks 45
Table 9. Layers for the two frameworks Delta3D and DMZ 46
Table 10. Summary of Openness model results for Delta3D and DMZ 55
Table 11. Transition points from empirical studies 67
Table 12. Transition points from empirical studies 70
Table 13. A reusability model for simulation frameworks 71
Table 14. Detailed listing of CK metrics for the Delta3D framework 73
Table 15. Detailed listing of CK metrics for the DMZ framework 74
Table 16. Summary listing of CK metrics for Delta3D and DMZ frameworks . . 74
Table 17. Detailed listing of reuse ratings for the Delta3D framework 75
Table 18. Detailed listing of reuse ratings for the DMZ framework 76
Table 19. Summary listing of reuse ratings for Delta3D and DMZ frameworks . 76
Table 20. Top ten classes with the highest WMC values 80
Table 21. Top ten classes with the highest DIT values 81
Table 22. Top ten classes with the highest NOC values 83
Table 23. Top ten classes with the highest CBO values 84
Table 24. Top eleven classes with the highest RFC values 85
Table 25. Framework classes in the top 100 classes sorted by highest metric values 86
Table 26. Agility metrics related to the files that are included. 90
Table 27. Agility metrics related to references made. 91
Table 28. Agility metrics can be compared side by side. 92
Table 29. Results of agility model calculations 93
Table 30. Work performed vs. support from literature 97
Table 31. Agility REC values compared to CBO values for Delta3D and DMZ . 100

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

LIST OF ACRONYMS AND ABBREVIATIONS

3D Three Dimensional

AFI Air Force Instruction

AMSMP Acquisition Modeling and Simulation Master Plan

ANSI American National Standards Institute

API Application Programming Interface

ASI Application Scripting Interface

C4ISR Command, Control, Communications, Computers, Intelligence, Surveillance
and Reconnaissance

CARDS Central Archive for Reusable Defense Software

CBO Coupling Between Object Classes

CK Chidamber and Kemerer

COTS Commercial Off-the-Shelf

DAC Data Abstraction Coupling

DIT Depth of Inheritance Tree

DSRS Defense Software Reuse System

DoDD Department of Defense Directive

DoD Department of Defense

FOSS Free and Open Source Software

GPL GNU Public License

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ILS Integrated Library Systems

IT Information Technology

LCOM Lack of Cohesion in Methods

LGPL Lesser GNU Public License

MIT Massachusetts Institute of Technology

MOSA Modular Open Systems Approach

MPC Message Passage Coupling

xv

M&S Modeling and Simulation

NATO North Atlantic Treaty Organization

NOC Number of Children

NPS Naval Postgraduate School

ONR Office of Naval Research

OO Object Oriented

OSG Open Scene Graph

OSJTF Open Systems Joint Task Force

OSS Open Source Software

OTDRP Open Technology Development Roadmap Plan

PM Program Manager

POSIX Portable Operating System Interface for Unix

RAPID Reusable Ada Product for Information System Development

REC Response Entropy for a Class

RFC Response for a Class

RNTDS Restructured Naval Tactical Data System

SEA Synthetic Environment for Assessment

SOA Service Oriented Architectures

SOAP Simple Object Access Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

UDDI Universal Description, Discovery, and Integration

U.S. United States

VBS2 Virtual Battlespace 2

W3C World Wide Web Consortium

WMC Weighted Methods per Class

XML Extensible Markup Language

xvi

ACKNOWLEDGEMENTS

Praise God from whom all blessings flow! Thank you to my wife, Gabrielle, and

my seven kids, Emma, Riley, Max, Sam, Jane, Claire, and Kevin, who support me and

bring me joy.

Thank you to my advisor, Dr. Rudy Darken, and my committee members, Dr. Ted

Lewis, Dr. Richard Riehle, Dr. Arnie Buss, and Lt. Col. Jeff Boleng, PhD from the U.S. Air

Force Academy, my pipeline sponsor.

Thank you to the late CAPT Gordon Nakagawa (USN), the coach of our NPS

Marksmanship Team, and to Joachim Beer and the entire team for a healthy bit of dis-

traction and improving my skills on the range.

Soli Deo Gloria!

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

I. INTRODUCTION

This research is about choosing a visual simulation architecture in acquisition. “Ar-

chitecture” is referring to such properties as object oriented, service oriented, component

based, data driven, blackboard, and peer-to-peer. Acquisition is a big problem in the De-

partment of Defense and is always being improved. In acquisition, simulation is sometimes

used to help evaluate competing products. Visual simulations are a narrower field within

that. Acquisition professionals have simulations to help them choose products, but they do

not have quantitative tools to help them choose visual simulation architectures.

A. THESIS AND PROBLEM STATEMENTS

Visual simulation architectures can be distinguished one from another based on

three objectives: (1) openness, as defined by code’s use of standards, its licensing, and sup-

port of innovation; (2) reuse, as defined by code’s ease of being used in subsequent projects;

and (3) agility, as defined by the ease with which code can be integrated, reconfigured, or

repurposed.

In our research, we found no existing quantitative models with metrics to help assess

these objectives in visual simulation architectures. We developed three quantifiable models

to measure openness, reuse, and agility and claim that the models adequately distinguish

visual simulation frameworks from one another. Furthermore, we claim that these metrics

are sufficient for improving military acquisition decisions.

B. BACKGROUND

The United States (U.S.) military is the largest single user of simulation in the world

(McDowell, Darken, Sullivan, & Johnson, 2006). Military visual simulations are software-

intensive systems that may have a long lifespan and address diverse military situations.

In acquisition, a simulation sometimes supports a program, and sometimes the simulation

1

is the program. Military acquisition involves a wide range of products, services, tactics,

doctrines, customers, vendors, timelines, and budgets that must be considered. Whether

simulation is the central or supporting role, costs associated with simulation can be enor-

mous. Therefore, having methods to help make good decisions are of critical importance.

Cost and safety concerns related to product development drive acquisition organi-

zations to choose simulation, e.g., synthetic environments, as a way to experiment with

new ideas, mitigate risk, or objectively compare alternatives. When the human element is a

critical part of the acquisition process, assessment becomes even more complex due to hu-

man capital availability, hardware and software changes, and the training needed to ensure

success. Modern simulation tools and prototyping utilities are often expensive, inflexible,

and proprietary.

In developing a new ship or airplane, a Program Manager (PM) may have the budget

to create a massive simulation from scratch, but most in the acquisition community have to

budget for simulation carefully. They have many programs to manage, many stakeholders

to consider, and many pockets of experience scattered throughout the community and even

within the program office. Their best hope is that they can build a simulation quickly and

cheaply with good justification.

Even for well-funded acquisition programs, efficiency and cost effectiveness are

important. Except for the case where the simulation itself is the program, every dollar spent

on Modeling and Simulation (M&S) is a dollar not spent on other forms of engineering and

product development. Defense M&S often has difficulty making a business case for itself

because of this.

Program managers need simulation software that enables them to address a variety

of needs, incorporate expertise from different sources, build trust in the simulations among

users, answer questions quickly, and save money. It is rare for a program to start a major

simulation project from scratch. Programmers use frameworks, Application Programming

Interfaces (APIs), toolkits, libraries, etc., as a starting point for fast and cheap develop-

ment. The understanding in the Department of Defense (DoD) about the importance of

2

architectures has improved, but there were no quantifiable tools to assist PMs in selecting a

framework that represents a desirable architecture. The research presented in this disserta-

tion did not reveal any previously-published scientific methodology or model using metrics

for assessing simulation software. The requirement is legitimate and unfilled.

There are a variety of qualities in visual simulation software that a PM may desire.

The three qualities of openness, reuse, and agility chosen for study in this dissertation are

not comprehensive, but they are representative and supported in the literature. If code

survives a long time, maintainability may also be important. Perhaps certain technical

features are desired. Security is a concern—or should be—for many systems. Although

a PM may desire all of these, some are more important to a project than others. Visual

simulation fosters the sharing of data, whether models of equipment or terrain databases,

so openness, reuse, and agility are of particular concern.

The specific needs for individual PMs and programs differ. Consider the following

three scenarios with three PMs with different programs and different simulation needs (Ta-

ble 1). One PM has a simulation for a major combat system. This is a long-term view. The

system is expected to be around for many years, and participants will change over time.

Another PM is in a different situation. Here there is a game based maintenance trainer for

the F-22. If successful, the general is going to say, “That’s great! Let’s put it out for the

Joint Strike Fighter too. Maybe we can get some of their funding.” Finally, there is the PM

with a UAV exercise coming up. There is a new camera to put on. Mission planners wonder

how the flight profiles might change with a different sensor. It is no surprise that there is

no one architecture or product that would be best for all of these situations, but what do the

PMs have to help them choose an architecture? The three objectives of openness, reuse,

and agility are good things on which to inform a decision.

The problem addressed in this dissertation is the absence of a quantifiable model, a

tool, to aid PMs in selecting an appropriate visual simulation framework. The models de-

veloped here do not address all of the concerns a PM may have. Many cannot be addressed

in a single dissertation. However, the models do provide a rigorous and quantifiable as-

3

Table 1: Characteristics of the three example programs drive different needs in the visual
simulation software used in the programs.

Game Based
Maintenance TrainerMajor Combat System UAV Sensor Exercise

15 year timeline Forks expected Quick & dirty
Vendor longevity Licensing Focused question
Technology changes Configuration Pre-packaged
Maintenance costs Manpower

sessment of three important elements of visual simulation software: openness, reuse, and

agility.

C. ORGANIZATION OF THIS DOCUMENT

Chapter II reviews the literature to show that there are no existing models available

for assessing the important issues of openness, reuse, and agility for visual simulation.

Regarding openness, the literature reveals a mixed set of issues. A taxonomy presented

by Maxwell (2006) provides a good basis for our model. Openness is divided into three

main attributes: standards, licensing, and innovation. A model presented by Anvaari and

Jansen (2010) provides structure for our model. Regarding reuse, the literature reveals

some established software metrics from S. Chidamber and Kemerer (1991). These metrics

are respected and are connected to many positive software attributes including ease of reuse.

Regarding agility, the literature reveals a less cohesive picture and no metrics on which to

base a model.

Chapter III presents our openness model, how it was developed, with a study veri-

fying the ability to distinguish between two visual simulation frameworks. Using the tax-

onomy of issues presented by Maxwell (2006) and the layers and operations presented by

Anvaari and Jansen (2010), this research develops criteria for assessing openness on a three-

axis system of layers, operations, and issues. The categorical ratings for each point can be

weighted according to a user value system to provide numerical assessment, if needed. The

4

model is applied to two visual simulation frameworks representing two very different ar-

chitectures. The model successfully differentiates the frameworks. It draws attention to

important distinguishing attributes.

Chapter IV presents the reuse model, how it was developed, and a study verifying

its ability to differentiate two visual simulation frameworks. Using the Chidamber and

Kemerer (CK) metrics and empirical validation studies found in literature, this research

develops criteria for the metrics. The categorical ratings for each metric can be weighted

according to a user value system to provide numerical assessment, if needed. The model is

applied to two visual simulation frameworks representing two very different architectures.

The model successfully differentiates the frameworks. It is weaker than the openness and

agility models.

Chapter V presents the agility model, how it was developed, and a study verify-

ing its ability to differentiate twoscriptsize visual simulation frameworks. Unlike the reuse

metrics, which can be calculated on static source code, agility metrics must be measured

“in motion.” There must be an act by a developer, and the effort must be estimated. This

research develops metrics for estimating the effort of swapping out a portion of code and

applies these metrics to two visual simulation frameworks representing two very different

architectures. The agility model reveals a dramatic difference between the two architec-

tures.

Chapter VI is the conclusion and presents a discussion about the research, a sum-

mary of findings, and considerations for future work.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

II. LITERATURE REVIEW

This chapter presents our literature review and identifies openness, reuse, and agility

as important features in software development for visual simulation. Common through all

three attributes is a general agreement that they are desirable but that there exists a lack of

detail about how to measure them.

Openness is defined by the use of standards, licensing, and support of innovation,

is considered an important quality in visual simulation software. It is discussed in many

papers inside and outside the visual simulation realm. Many people have opinions, asser-

tions, and definitions for openness, but no models suitable for measuring the openness of

visual simulation architectures could be found.

Reuse is defined by the ease of code being used in subsequent projects. Therefore,

reuse is considered an important quality in visual simulation software. Effective code reuse

has been a goal of computer programmers since subroutines were invented in 1949 for the

EDSAC computer (Wilkes & Renwick, 1949). While we found many individual metrics

for different aspects of reuse, we found no models of reuse that could encompass these

metrics to supply a decision maker with differentiating results.

Agility is defined here as the ease with which code can be reconfigured, repurposed,

or integrated. It is also an important goal in visual simulation software. As military threats

change, software requirements also change (Lanman & Proctor, 2009; Scott, 2010), and

therefore, simulation software must be easily repurposed for unanticipated use. Agility is

the least rigorously defined and studied of the three features assessed in this dissertation.

This literature was the most difficult for two reasons: (1) agility means different things to

different people, and (2) our meaning of agility is sometimes only identifiable in an author’s

work by discerning the author’s intent and examining his or her actual actions. No models

suitable for measuring the agility of visual simulation architectures could be found.

7

A. OPENNESS

1. What is Openness?

There are many definitions and attributes of openness provided in the literature.

A review of them reveals many common traits. While reviewing these many facets of

openness, we use three overarching issues—standards, licensing, and innovation—that will

support our openness model. This taxonomy of openness is used by Maxwell (2006) in

his defense of the idea that value can be created through openness. All of the literature

reviewed below focuses on one or more of these aspects of openness.

Gimenes, Silva, Reis, and Oliveira (2008) describe flight simulation environments

for unmanned aerial vehicles. They address standards, licensing, and innovation with their

definition of openness. Their definition includes defined APIs, communication protocols,

data formats, viewing and altering source code, and community expansion through mod-

ules.

The Open Systems Joint Task Force (Open Systems Joint Task Force, 2004) ad-

dresses openness by providing guidance for program managers to implement a Modular

Open Systems Approach (MOSA), which they call the “fundamental building block of

joint integrated warfare systems.” The Defense Acquisition Guidebook gives five MOSA

principles, which address standards, licensing, and innovation: (1) establishing an enabling

environment, (2) employ modular design, (3) design key interfaces, (4) use open standards,

and (5) certify conformance (Defense Acquisition University, 2010).

a. Standards

Some literature highlights the role of standards with respect to openness.

Here openness is defined by its relation to such issues as accessibility, integration, commu-

nication, and interoperability.

Describing the phases for developing a domain-oriented reuse library for

the U.S. Air Force, Curfman (1993) addresses standards by identifying accessibility as

an attribute of openness, which he connects to policy and communications. In the same

8

year Oswalt (1993), in his detailed report on “Current Applications, Trends, and Organiza-

tions in U.S. Military Simulation and Gaming,” defines standardization as the “number of

standards to which a particular simulation conforms” and recommends the military adopt

commercial standards.

Writing for the Command, Control, Communications, Computers, Intelli-

gence, Surveillance and Reconnaissance (C4ISR) Cooperative Research Program, Krygiel

(1999) addresses standards by studying integration issues on large scale systems. She con-

nects open systems with interfaces, data formats, hardware portability, and interoperability.

The Open Systems Joint Task Force (2004) says that standards must be

“well defined, mature, widely used, and readily available” and that standards should be

selected based on “maturity, market acceptance, and allowance for future technology in-

sertion.” Their preferences for the adoption of standards is (1) open standards, (2) de facto

standards, and (3) government and proprietary standards.

Maxwell (2006) identifies standards with communication carrier and con-

tent. This he applies both to networking, with Transmission Control Protocol/Internet

Protocol (TCP/IP) being an example of carrier and Hypertext Markup Language (HTML)

being an example of content. He also calls attention to the ability of software to run on

disparate hardware, as is the case with American National Standards Institute (ANSI) C or

the Portable Operating System Interface for Unix (POSIX) standard.

b. Licensing

Open licensing refers to what a consumer is permitted to do with a piece

of software. Licenses can be very restrictive, such as requiring a student-licensed copy of

software not to be used for commercial purposes, or very open, such as the entire source

for a system being made available for review and modification.

The struggle is between the creators, who have the right to control their

work, and the users, who may see themselves as prevented from doing things with software

that they might wish to do (Maxwell, 2006). The government’s understanding of this bal-

9

ance is further evidenced in its opposition to certain kinds of monopolies but endorsing of

limited-term, “mini-monopolies” with the patent and copyright systems.

The DoD Open Source Software (OSS) Frequently Asked Questions web-

site (Department of Defense, 2011) identifies open source as “software for which the

human-readable source code is available for use, study, re-use, modification, enhancement,

and re-distribution by the users of that software.”

Müller (2011) divides software licensing into seven categories: (1) Public

domain, (2) Free Software, (3) Open Source Software, (4) Freeware, (5) Shareware, (6) Pro-

prietary Software, and (7) Patented Software. Each of these has certain characteristics that

our model should differentiate.

Different organizations differ on their distinction between free and open

source. Richard Stallman, an advocate for free software, encourages people to think in

terms of “free speech” rather than “free beer.” His meaning of free software refers more

to the rights granted to users of software (Stallman, 2010). The Open Source Initiative’s

definition of open source differs on some points from Stallman’s definition of free (Open

Source Initiative OSI, 2011). As a result, free is sometimes distinguished from open source

(as with Müller’s taxonomy above). Sometimes it is grouped together, as with the common

acronym Free and Open Source Software (FOSS), which acknowledges that a distinction

exists but that there is more in common than not.

The DoD is also careful to distinguish among different meanings of free and

open. Chief Information Officer for the Department of Defense David M. Wennergren, in

a memorandum dated 16 October 2009 with the subject “Clarifying Guidance Regarding

Open Source Software (OSS),” clarifies that the DoD Instruction 8500.2, which limits the

use of software with “limited or no warranty,” does not apply to open source software, for

which anyone could provide maintenance and a warranty because the source code is avail-

able. David Wheeler, who helped draft this memorandum, pointed out in an interview that

freeware is no-cost, while closed-source is software for which there is no one to provide

maintenance or a warranty. Therefore, open source software cannot be considered free-

10

ware (Schwartz & Phipps, 2011). The memorandum goes on to explain that “In almost all

cases, OSS meets the definition of ‘commercial computer software”’ and provides six le-

gal references. Because contractors are generally required to prefer “commercial computer

software” over writing their own software from scratch, this clarification gives contractors

greater latitude in selecting open source software in their work.

Maxwell (2006) recalls that in the early days of computing in the 1950s and

1960s, software was written primarily in academic settings where sharing ideas and infor-

mation was expected but that it was a community norm, not a legal requirement. As people

began to think in terms of owning software, open source licenses, which grant explicit per-

mission to view and modify source code, arose. Open source licenses focus on the rights

of the users and widest possible dissemination.

c. Innovation

Open innovation refers to a community being able to collaborate and share

ideas. The moniker “innovation” is not always used in the literature. The innovation that

people desire from openness is revealed in words like participation, sharing, and collabo-

ration.

In an article entitled “The Many Faces of ‘Open,”’ Updegrove (2005) relates

attributes of openness that he claims are “generally conceded.” Three features of openness

to which he calls attention are participation (who is involved), process (participants abil-

ity to influence the outcome), and terms (intellectual property rights). In this Updegrove

acknowledges both the innovation and the licensing aspects of openness.

For Maxwell (2006), the defining characteristics of open innovation are col-

laboration and sharing. He warns that this should not be confused with a lack of intellectual

property or the abolishment of compensation but shows that new forms of compensation

emerge when open innovation takes hold. Open innovation is a community being able to

collaborate and share ideas and software.

11

2. Why Openness is Important

Openness is important to software development and visual simulation software in

particular. A review of the literature reveals many advantages of openness. A common

thread is that big ideas from individuals or small teams can find their way to a wide audience

when openness is encouraged. Innovators are able to leverage the work done by others,

standing on the shoulders of giants.

a. Benefits

Openness is of immense importance in the world of the acquisition profes-

sionals who seek to find the best solutions for the government. They may need to merge

solutions from many sources and may find themselves having to integrate partial solutions

to achieve their goals. In the case of simulation, with the right software framework, they

may be able to forge their own simulations, leveraging the work of others and contributing

back the portions unique to their domain.

Describing the process of modifying Commercial Off-the-Shelf (COTS)

games for military use, Fong (2004) notes the shift from paying game developers huge

sums of money and submitting to stringent licensing agreements to modifying existing

games with mods. He cites many benefits that this example of open innovation brings. For

the game developer, third party mods extend the shelf life of their games bringing economic

benefit. Those writing mods benefit from a low barrier to entry. With low risk and low cost,

they get to leverage sophisticated game technology. Mods offer quicker turnaround time

in bringing new capabilities to bear than creating a new game from scratch. Experienced

soldiers, marines, sailors, and airmen in the community of gamers can identify inaccuracies

and report them resulting in higher fidelity models. Fong identifies the biggest obstruction

is a lack of source code and hopes that more developers will embrace the open source move-

ment: “If more game developers adopt the same mantra of free information access, it will

pave the way for more extensive modifications of COTS games to meet specific military

interests.”

12

The Open Systems Joint Task Force (2004) lists many benefits of openness

for program managers. They encourage program mangers to embrace MOSA because it is

an enabler to help them make affordable changes, employ spiral development, develop in-

tegrated roadmaps for their projects, adapt to evolving threats, leverage commercial invest-

ment, reduce development time, improve interoperability, mitigate risk from obsolescence,

and mitigate risk of a single supply source, to name a few.

Wichmann (2002) reports on the state of open source software in businesses

and points out that openness in the standards creation process is critical to reduce the pos-

sibility that a standard is used to keep certain players out of a market. Open standards

increases competition and helps ensure a level playing field for all participants.

Open standards encourage participation by many parties and reduce the like-

lihood that only a single party’s interests are represented. One company denying access to

a specification to a competitor may be attractive to the company in power, but it is a dis-

advantage to consumers who may resist being locked into one provider because of a lack

of open standards. Greater participation and greater adoption spurs greater innovation of

benefit to consumers (Maxwell, 2006).

The Economist (2005) noted that open standards “allow and promote unex-

pected forms of innovation.” They cite several examples where people have made mash-ups

that create value by joining information from one website with information from another.

This also serves to boost the popularity of the source websites. The economic benefit pro-

vided by mash-ups is necessary because, “if the information being mashed is useful, it is

probably expensive for the originated sites to put on the web in the first place.”

WaughPartners and OSSWatch (2007) show that openness impacts sustain-

ability, applicability, interoperability, and trustworthiness. Sustainability is improved for

data by open data standards and in software by open source licensing. This helps pro-

tect against data loss and software obsolescence. Applicability (who is able to benefit

from software) is improved by replacing a single point of control—and their single set of

requirements—with open access and collaboration allowing more people to add value to

13

the system. Interoperability is improved with open communication standards. TCP/IP is

a prime example. Trustworthiness (knowing that a system will perform as documented) is

improved by open source licensing where interested parties can perform their own audits

on software.

The Open Technology Development Roadmap Plan (OTDRP), prepared for

the Deputy Under Secretary of Defense, identifies open standards and open interfaces as

key elements in the success of DoD software (Herz, Lucas, & Scott, 2006). It states that

the “DoD must pursue an active strategy of open interfaces, modularity, and reuse” and

outlines a strategy to combine “salient advances” in the following areas, which are directly

addressed by this research (Figure 1).

 7

! "#$%&'(!)*)!+*!(',-.'!+/'!0#1.$(+.-,+-.'!$#2!0#,.'$('!
(',-.0+3!%3!-#2'.(+$#20#4!5/$+!0(!$,+-$&&3!0#!+/'!(*-.,'!
,*2'!*1!(*1+5$.'!0#(+$&&'2!0#!)*)!#'+5*.6(7!

! 8$902&3!.'(9*#2!+*!$2:'.($.3!$,+0*#(!$(!5'&&!$(!.$902!
,/$#4'(!0#!+/'!+',/#*&*43!0#2-(+.0$&!%$('7!

!
!
;/0(!.*$2<$9!*-+&0#'(!$!9&$#!+*!0<9&'<'#+!=;)!9.$,+0,'(>!9*&0,0'(!
$#2!9.*,'2-.'(!50+/0#!+/'!)*)7!
!
Open Technology Development
!
!"#$#%&'%()#%*"&)+%'*$()+#$%*",)%,--%*"#%,$.&#'%&)%*"#%/($-01%,)0%*",*%
&'%,)%&0#,%/"('#%*&.#%",'%2(.#3%%
%%%%4%5&2*($%67+(%!
!
?*1+5$.'!,*2'!/$(!%',*<'!,'#+.$&!+*!/*5!+/'!5$.@104/+'.!0(!$%&'!+*!
,*#2-,+!<0((0*#(7!A1!+/0(!(/01+!0(!+*!%'!$!(+.'#4+/>!.$+/'.!+/$#!$#!
B,/0&&'(C!/''&>!)*)!<-(+!9-.(-'!$#!$,+0:'!(+.$+'43!+*!<$#$4'!0+(!
(*1+5$.'!6#*5&'24'!%$('!$#2!1*(+'.!$#!0#+'.#$&!,-&+-.'!*1!*9'#!
0#+'.1$,'(>!<*2-&$.0+3!$#2!.'-('7!;/0(!'#+$0&(!$!9$.$&&'&!(/01+!0#!
$,D-0(0+0*#(!<'+/*2*&*40'(!$#2!,*.9*.$+'!$++0+-2'!+*!1$,0&0+$+'!
20(,*:'.3!$#2!.'@-('!*1!(*1+5$.'!,*2'!$,.*((!)*)7!
!

!
!
=;)!<'+/*2*&*40'(!.'&3!*#!+/'!$,,'((!$%0&0+3!*1!$!(*1+5$.'!
,*<<-#0+3!*1!0#+'.'(+!*.!9.$,+0,'!+*!$,,'((0%&'!$,,'((!(*1+5$.'!
,*2'!*.!$99&0,$+0*#!0#+'.1$,'(!+/$+!'#$%&'!2','#+.$&0E'2!
2':'&*9<'#+!*1!,9%0&0+0'(!+/$+!&':'.$4'!+/'!'F0(+0#4!,*2'!%$('7!
=;)!<'+/*2*&*40'(!/$:'!%''#!-('2!1*.!=??!2':'&*9<'#+>!*9'#!

Open Technology Development combines salient
advances in the following areas:

1. Open Standards and Interfaces
2. Open Source Software and Designs
3. Collaborative/Distributive culture and the

and online support tools
4. Technological Agility

!

Figure 1: The advances recommended by the Open Technology Development Roadmap
plan (Herz et al., 2006) are supported directly by this research.

The OTDRP also identifies advantages that openness (and reuse and agility)

in software development contribute to national security:

• Enhances agility of Information Technology (IT) industries to more rapidly adapt

and change to user needed capabilities.

• Strengthens the industrial base by not protecting industry from competition. Makes

industry more likely to compete on ideas and execution versus product lock-in.

• Adoption recognizes a change in our position with regard to balance of trade of IT.

14

• Enables DoD to secure the infrastructure and increase security by understanding what

is actually in the source code of software installed in DoD networks.

• Rapidly respond to adversary actions as well as rapid changes in the technology

industrial base.

Several authors write that openness fosters interoperability, spurs competi-

tion that benefits consumers, increases participation, increases opportunities for success,

and avoids vendor lock in (Davis & Anderson, 2004; Maxwell, 2006; McDowell et al.,

2006; Scott, 2010). Maxwell (2006) acknowledges that some people argue that open stan-

dards may reduce efficiencies that tightly integrated proprietary systems can offer and that

open standards may reduce innovation because developers are no longer forced to think

outside the box as they are forced to work around proprietary technology. This is a poor ar-

gument, and he asserts that standards permit innovation to be focused where the real value

lies, in integrating systems.

Regarding innovation, Democratizing Innovation (Hippel, 2005) and The

Wealth of Networks: How Social Production Transforms Markets and Freedom (Benkler,

2006) explore the value added to individuals and a society by collaboration and sharing.

They show that win-win scenarios are possible when innovative ideas are shared. In this

way innovation mirrors money in an old proverb that might be updated to read, “Innovation

is like manure. Unless you spread it around, it doesn’t do much good.”

Open innovation also blurs the line between producer and consumer. Con-

sumers know their needs but cannot always articulate them well. However, give someone

capable tools, and they may solve their own problem. The online auction site eBay is an

example of a company that provides the means for users to solve their own problems—and

thousands of people now make their living with their own “eBay Store.”

15

b. Mandates

Not to be overlooked are government mandates related to openness. Be

assured that these mandates are in place because of the benefits provided by openness, but

as mandates or government “suggestions” they receive special recognition here.

The Clinger-Cohen Act of 1996 directed the U. S. Government to operate

more business-like with respect to information systems. (Clinger & Cohen, 1996) Accord-

ingly Department of Defense Directive (DoDD) 5000.01 requires the use of modular, open

systems. Enclosure 1.1.27 states that, “Acquisition programs shall be managed through

the application of a systems engineering approach that optimizes total system performance

and minimizes total ownership costs. A modular, open-systems approach shall be em-

ployed, where feasible” (emphasis added) (Department of Defense, 2003). DoD Instruc-

tion 5000.02 follows up in Enclosure 12.8: “MODULAR OPEN SYSTEMS APPROACH

(MOSA). Program managers shall employ MOSA to design for affordable change, enable

evolutionary acquisition, and rapidly field affordable systems that are interoperable in the

joint battle space” (Department of Defense, 2008).

Individual services have followed up with their own guidance directing the

use of modular, open systems. Expanding on DoDD 5000.01, then United States Assistant

Secretary of the Navy John J. Young, Jr., in a letter dated 5 August 2004 with the subject

“Naval Open Architecture Scope and Responsibilities,” wrote that he was initiating “an ef-

fort to establish open architecture principles as the basis for all war fighting systems devel-

opment and maintenance” (Young Jr., 2004). The Deputy Chief of Naval Operations Rear

Admiral M.J. Edwards, in a letter dated 23 December 2005 with the subject “Requirement

for Open Architecture (OA) Implementation,” established “the requirement to implement

Open Architecture (OA) principles across the Navy Enterprise” and cited as one justifi-

cation the need to “implement agile changes that support rapidly evolving requirements”

(Edwards, 2005).

The “Clarifying Guidance Regarding Open Source Software (OSS)” mem-

orandum referred to earlier identifies open source software as an enabler to “anticipate new

16

threats and respond continuously to changing environments” (Wennergren, 2009). This

memorandum identified many advantages of open source software such as increased secu-

rity through peer review, faster response times through unrestricted ability to modify source

code, reduced barriers to entry and exit for vendor participation, and cost savings by reduc-

ing per-seat licensing and a shared maintenance burden. This memorandum clarifies many

misunderstandings in the DoD about open source software.

DoD Instruction 5000.2-R Mandatory Procedures for Major Acquisition

Defense Programs and Major Automated Information Systems Acquisition Programs iden-

tifies openness in system design as crucial to enable full and open competition (Office of

the Under Secretary of Defense, 2002). Regarding standards, it states that “M&S standards

facilitate reuse. . . and reduce cost by providing approved solutions to common problems.”

The OSD Acquisition Modeling and Simulation Master Plan (AMSMP) di-

rects the development of open standards in systems engineering and architecture modeling

as well as standards for distributed, simulated environments (Office of the Under Secretary

of Defense, 2006).

In Modeling and Simulation in Manufacturing and Defense Systems Ac-

quisition the National Research Council recommends a culture of collaboration, part of

openness, in DoD acquisition (National Research Council, 2005).

3. How Openness is Measured

There has been some effort to quantify openness at different levels. The literature

has both one-off suggestions for openness metrics as well as in-depth surveys to assess

licensing details. This literature review did not reveal any openness models that would

meet our requirements for differentiating visual simulation architectures.

Regarding standards, the Open Systems Joint Task Force (2004) encourages pro-

gram managers to use specific program measurements to gauge a program’s progress in

implementing MOSA. It even goes so far as to suggest a metric for openness: “For exam-

ple, the percentage of key interfaces defined by open standards could be used as a metric to

measure the degree of system openness.”

17

WaughPartners and OSSWatch (2007) present their “first draft” of an openness

evaluation model and provide a survey with 46 questions regarding licensing, standards,

knowledge, governance, and marketplace along with numeric values for the responses to

the questions in order to calculate an openness value for each of the five categories. They

apply their model to three open source Unix-like kernels and three databases (two open

source and one proprietary). The issues addressed in this work fit roughly within our tax-

onomy of openness—standards, licensing, and innovation—but while it addresses openness

in great detail, it addresses software projects as a whole and does not distinguish between

the different parts of a system and degrees of openness within each part, which we show in

this dissertation is a strong differentiator in visual simulation.

Anvaari and Jansen (2010) evaluate five mobile phone operating systems and intro-

duce evaluating openness at a finer grained level. They evaluate the software along two

axes, which they call layers and factors. Layers refers to the function and scope of the soft-

ware pieces. Factors refers to possible development operations performed on the software.

Their evaluation consists of determining whether each factor is possible to perform at each

layer and the associated licensing implications. Standards and innovation are not part of

their evaluation.

Focusing on licensing, Müller (2011) evaluates 20 Integrated Library Systems (ILS)

for the purpose of finding the best open source programs for library use. He throws out all

systems that he does not qualify as open source. To determine what is open, he measures

the “correlation between the practices within the community and the terms associated with

free or open software license” and divides software licenses into seven categories from

public domain to patented. Differentiation by license is his first concern. He continues his

ILS evaluation by considering the communities behind each project and almost 800 specific

functions and features related to library use.

4. Summary of Openness

Openness has many facets, but the three major headings of standards, licensing, and

innovation capture most people’s concerns and represent the openness we wish to measure

18

in visual simulation architectures. In all the literature reviewed, no models suitable for

measuring the openness of visual simulation architectures could be found, though some

features on which a model could be built are present.

B. REUSE

1. What is Reuse

There are varying forms of reuse and meanings used in the literature, and since

some confusion may arise when definitions are too narrow, we present some explanation

of the term reuse. The simplest forms of reuse have been around the longest and have the

most widespread use. More sophisticated forms of reuse arose later and sometimes have

limited applicability or are tied to specific architectures. Ultimately, the literature focuses

on reuse as a measure of code quality. Many metrics have been presented to this end, and

most assume Object Oriented (OO) programming.

Ambler (1998) breaks out reuse into eight different types: (1) Code, (2) Inheri-

tance, (3) Template, (4) Component, (5) Framework, (6) Artifact, (7) Pattern, and (8) Do-

main Component reuse. Making use of the visual simulation frameworks discussed in this

dissertation would involve code, inheritance, and framework reuse.

Reuse through patterns is considered a high form of reuse because it refers not

to actually reusing code but reusing ideas or approaches to solving problems. In this

sense patterns permit reuse to happen even across programming languages. In the land-

mark book Design Patterns: Elements of Reusable Object-Oriented Software the so-called

“gang of four” identify such common patterns as Singleton, Adapter, Iterator, and Observer

(Gamma, Helm, Johnson, & Vlissides, 1995).

J. Lewis (2006) identifies several examples of coarse reuse in military simulations.

These include purchasing off the shelf games, e.g., Microsoft Flight Simulator and Falcon

4.0, modifying existing games, e.g., Spearhead II and Marine Doom, and paying to have

game companies develop custom simulations with their underlying engines, e.g., America’s

Army.

19

McIlroy (1968), at a now-famous North Atlantic Treaty Organization (NATO) con-

ference in Garmisch, Germany, proposed a market for “mass produced software compo-

nents” where pieces of code could be bought and sold. He recognized that no one com-

pany or even industry would be able to produce a full complement of quality software but

that each could contribute its best work. Although McIlroy’s specific vision has not ma-

terialized, parts of his ideas can be seen in the emergence of both a multi-billion dollar

commercial software industry as well as the open source software community.

Jansen, Brinkkemper, Hunink, and Demir (2008) define two kinds of reuse that de-

scribe the developer more than the code. Pragmatic reuse is the extension of third party

software that was not found with any formal procurement method and may not have been

designed with reuse in mind. Opportunistic reuse is extending software with third party

software that was not meant to be integrated or reused. Though others prefer more delib-

erate and systematic reuse (Morad & Kuflik, 2005; Ommering, 2005), Jansen et al. show

how two companies benefit from even this kind of ad hoc reuse.

2. Why Reuse is Important

Reuse is considered by many to be a key to improving software productivity and

quality (Biggerstaff & Richter, 1987; Kim & Stohr, 1992; Mili, Mili, & Mili, 1995), and

reuse is mandated or strongly encouraged in the DoD. However, after many years of re-

search and advances in techniques and metrics, reuse is still not as common as many people

would like (Biggerstaff & Richter, 1987; Herz et al., 2006; Garlan, Allen, & Ockerbloom,

2009; Scott, 2010).

a. Benefits

For most people it is intuitive that code reuse is a good thing, and when

pressed, two main reasons are likely to emerge: time and money (Washizaki, Yamamoto,

& Fukazawa, 2003; Haefliger, Krogh, & Spaeth, 2008). Of course, the two are related, and

a saving of either one is of great interest (Becker, 1965). Development savings can range

20

from 50–100% with typical savings being about 80%, which can pay off even when it costs

extra to write the initial code with reusability in mind (Poulin, 2006).

Reuse can reduce the effort required of developers (Mili et al., 1995; Davis

& Anderson, 2004; Ragab & Ammar, 2010) by amplifying the software developer’s ca-

pabilities and reducing the number of symbols in a system (Biggerstaff & Richter, 1987)

resulting in higher quality software (Mili et al., 1995). Brutzman, Zyda, Pullen, and Morse

(2002) write, “Interoperable reuse is essential for feasibility, life-cycle supportability, fund-

ability, and product flexibility.”

Analyzing his company Philips, which manufacturers software-intensive

hardware such as medical systems and consumer electronics, Ommering (2005) cites three

main challenges, which he shows are improved by good reuse: (1) increasing complexity in

the software, (2) growing diversity in products, and (3) a decrease in allowed development

time. These challenges should be familiar to any program manager in the Department of

Defense. He finds that their systematic and component based approach to reuse results in a

more manageable software base than the “opportunistic” reuse that marked the early days

of electronics manufacturing. The component subsystems have a longer lifespan than the

actual products they support, and Philips has developed a set of golden and silver rules with

varying degrees of effectiveness at reducing unintended consequences. Ommering and oth-

ers (Biggerstaff & Richter, 1987) observe the balance in writing software general enough

to be reused but specific enough to be useful. He believes that their deliberate efforts at

systematic reuse have significantly benefitted the company.

Software is often not reused in the DoD (Herz et al., 2006; Scott, 2010).

This results in wasted funding with multiple development efforts. This also results in slower

development times making it harder for the DoD to respond to new missions and emerging

threats.

b. Mandates

The government has opinions regarding reuse as well, and military services

have instituted programs to promote and manage code reuse. Early efforts include the Air

21

Force’s Central Archive for Reusable Defense Software (CARDS), the Navy’s Restructured

Naval Tactical Data System (RNTDS), the Army’s Reusable Ada Product for Information

System Development (RAPID) program, and the Defense Software Reuse System (DSRS)

(Therriault & Van Nederveen, 1994).

Air Force Instruction (AFI) 33-114 states, “Software reuse benefits the Air

Force through increased developer productivity, improved quality and reliability of software-

intensive systems, enhanced system interoperability, lowered program technical risk, and

shortened software development and maintenance time” (U.S. Air Force, 2004).

In “Open Technology Development (ODT): Lessons Learned and Best Prac-

tices for Military Software” Scott (2011) emphasizes the need for code reuse as a necessary

means for developing software quickly and inexpensively. The OTDRP also recommends

reuse. The AMSMP assumes the need for reuse and lays out requirements for systems

enabling the discovery of reusable software and data (Office of the Under Secretary of

Defense, 2006).

3. How Reuse is Measured

We can divide the measurement of reuse into two categories: actual reuse and po-

tential for reuse. Actual reuse refers to completed projects that have reused code from

previous projects, such as the OTDRP suggesting DoD program managers count the num-

ber of times a software component has been used by multiple (acquisition) programs (Herz

et al., 2006). Potential for reuse, with which this dissertation is more concerned, refers to

the ease with which code might be reused, based on various qualities of that code.

Briand, Daly, and Wust (1999) defined two kinds of attributes that help describe

software: internal and external. Internal attributes can be defined in terms of the software

itself (e.g., lines of code). External attributes cannot be measured solely in terms of the

software (e.g., comprehensibility). Some external factors that affect reusability include

comprehensibility and maintainability (Cho, Kim, & Kim, 2007).

22

Complexity, coupling, and cohesion are three internal attributes that support reusabil-

ity and are related to comprehensibility, maintainability, quality, and the separation of func-

tion and purpose (Table 2).

Selecting among OO metrics is a weighty task. Xenos, Stavrinoudis, Zikouli, and

Christodoulakis (2000) list over 89 metrics that can and have been applied to OO software

and more metrics have been published since then (Table 3). Despite the many metrics put

forth, only a few have lasted beyond a few papers.

S. Chidamber and Kemerer (1991) proposed metrics to address object oriented soft-

ware specifically. Their work was immediately taken up by others. Li and Henry (1993a)

refine some ambiguities in the CK metrics and propose two more detailed metrics to replace

the CK metric regarding class coupling.

Again regarding coupling, Martin (1994) distinguishes between individual classes

and categories of classes and introduces Instability, a ratio describing how many classes

inside a category depend on classes outside the category.

The stability of the software involved in the coupling also affects the degree to

which coupling may have a practical effect (White, 1994; Hitz & Montazeri, 1995). Cou-

pling to basic language implementations such as integers are less troublesome than cou-

pling to small foundation classes such as string or date, and all of these couplings are

preferred over coupling to classes in the problem domain.

The most enduring software metrics related to reusability and other qualities come

from S. R. Chidamber and Kemerer (1991, 1994). Their six “CK” metrics have been often

put to the test and are still used today (Cho et al., 2007). They address concerns that too

many software metrics, especially for object oriented design, do not have solid theoretical

basis (Kearney, Sedlmeyer, Thompson, Gray, & Adler, 1986), lack theoretical rigor (Vessey

& Weber, 1984), refer to procedures rather than objects (Henry & Kafura, 1984), and do not

possess appropriate mathematical properties for producing “normal predictable behavior”

(Prather, 1984; Weyuker, 1988). The CK metrics are Weighted Methods per Class (WMC),

Depth of Inheritance Tree (DIT), Number of Children (NOC), Coupling Between Object

23

Table 2: Researches agree that complexity, coupling, and cohesion affect code comprehen-
sibility, maintainability, quality, and therefore reusability.

Paper Quote

Mills, 1988 The results indicated that module coupling was an important factor in determining the quality
of the resulting product.

Wand & Weber, 1990 It is generally believed that system decompositions which have “loosely-coupled” subsystems
are easier to understand than system decompositions which have “tightly-coupled” subsystems.

Devanbu, Brachman, &
Selfridge, 1991

Thus, this lack of knowledge among developers leads to a vicious cycle where the system be-
comes progressively more complex, and thus harder to know.

S. Chidamber & Kemerer,
1991

Excessive coupling between objects outside of the inheritance hierarchy is detrimental to mod-
ular design and prevents reuse.

Sharble & Cohen, 1993 The recognized achievement of OOSD is the production of software that is less complex, and is
therefore easier to maintain and extend, and can be more easily reused.

Sharble & Cohen, 1993 Excessive coupling between objects outside of the inheritance hierarchy is detrimental to mod-
ular design and prevents reuse.

Hitz & Montazeri, 1995 Software engineering experts assure that designs with low coupling and high cohesion lead to
products that are both, more reliable and more maintainable.

Briand, Morasca, & Basili,
1996

Lower complexity is believed to provide advantages such as lower maintenance time and cost.

Briand, Daly, Porter, &
Wust, 1998

Some measures, in particular coupling and inheritance ones, are shown to be significantly re-
lated to the probability of detecting a fault in a class during testing.

Allen & Khoshgoftaar,
1999

When used in conjunction with measures of other attributes, coupling and cohesion can con-
tribute to an assessment or prediction of software quality.

Tang, Kao, & Chen, 1999 Excessive coupling indicates weakness of module encapsulation and may inhibit reuse.

Agrawal, Bayardo, Gruhl,
& Papadimitriou, 2002

Such loose-coupling of distributed components reduces coordination overhead, fostering faster
parallel development.

Open Systems Joint Task
Force, 2004

Decoupling modules eases development risks and makes future modifications easier.

Xu, Qian, & He, 2006 The decoupling metrics can be used to measure and evaluate the decoupling attributes of a
distributed, service- oriented software architecture that has very significant impacts on the un-
derstandability, maintainability, reliability, testability, and reusability of software components.

Cho et al., 2007 Excessive coupling is detrimental to modular design and prevents reuse. The more independent
a class is, the easier it is reuse in another application.

Offutt, Abdurazik, &
Schach, 2008

Software coupling can be used to estimate a number of quality factors, including maintainabil-
ity, complexity, and reliability.

24

Table 3: A sampling of the over eighty metrics which have been proposed to measure
software (Xenos, 2000).

Metric Description

AHF Attribute Hiding Factor is the ratio of the sum of inherited attributes in
all system classes under consideration to the total number of available
classes attributes.

CEC Class Entropy Complexity measures the complexity of classes based on
their information content

CLM Comment Lines per Method measures the percentage of comments in
methods.

DAM Data Access Metric is the ratio of the number of private attributes to the
total number of attributes declared in the class.

FOC Function Oriented Code measures the percentage of non object–oriented
code that is used in a program.

INP Internal Privacy refers to the use of accessory functions even within a
class.

MAA Measure of Attribute Abstraction is the ratio of the number of attributes
inherited by a class to the total number of attributes in the class.

MHF Method Hiding Factor is defined as the ratio of the sum of the invisibil-
ities of all methods defined in all classes to the total number of methods
defined in the system under consideration.

NAD Number of Abstract Data types is the number of user-defined objects used
as attributes in a class that are necessary to instantiate an object instance
of the class.

NCM Number of Class Methods in a class measures the measures available in
a class but not in its instances.

NPM Number of Parameters per Method is the average number of parameters
per method in a class.

PCM Percentage of Commented Methods is the percentage of commented
methods.

25

Classes (CBO), Response for a Class (RFC), Lack of Cohesion in Methods (LCOM). These

metrics will be examined in greater detail in the Chapter IV: Reuse.

Rosenberg and Hyatt (1995) summarize several papers and books that propose met-

rics to measure various software qualities including “understandability, reusability, and

maintainability,” all three of which are linked in their estimation. They identify supporting

papers that confirm the relationship between the metrics and the various software qualities.

Of the metrics that pertain to understandability, reusability, and maintainability, they cite

Size with four supporting works, Comment Percentage with one supporting work, WMC

with four supporting works, RFC with four supporting works, LCOM with five supporting

works, CBO with six supporting works, DIT with five supporting works, and NOC with

four supporting works.

Kitchenham (2010) surveys the literature again and finds that CK metrics dominate

the research. Although she and a few others take issue with some of them, these metrics

are the most studied and most understood metrics that we can “reuse” to help us measure

reuse.

The CK metrics have been validated by a number of studies (Li & Henry, 1993b;

Basili, Briand, & Melo, 1996; S. Chidamber, Darcy, & Kemerer, 1998; Tang et al., 1999;

Cartwright & Shepperd, 2000; Olague, Etzkorn, Gholston, & Quattlebaum, 2007). Most

of these studies correlated the CK metrics to the fault-proneness of the code, a response

variable that could be measured by examining the change history of a codebase. These

validation studies also provide an empirical basis for estimating expected values of the

metrics in software.

4. Summary of Reuse

Reuse has been estimated by many metrics by many people, but the most enduring

are the CK metrics. The literature overwhelmingly speaks of metrics for reuse in terms

of code quality. This is not the meaning of reuse that we originally intended, and this

forced the introduction of agility as a third model. In all the literature reviewed, no models

26

suitable for measuring the reuse of visual simulation architectures could be found, though

some metrics on which a model could be built are present.

C. AGILITY

1. What is Agility

We refer to agility specifically as software being easily reconfigured, repurposed, or

integrated, but there are many other definitions to sift through in the literature. Qumer and

Henderson-Sellers (2006b) writes, “there is no rigorous or complete definition of agility.”

Dove (1994) writes, “agility is a very seductive word” and describes a litany of “personal

definitions” that may accompany it: cycle time reduction, customization, streamlining,

reengineering, learning organization, productivity. Scott (2010) uses the term adaptability.

TechWeb (2008) uses the expression, “react quickly to changing market dynamics.” Several

authors, especially in the Journal of Defense Modeling and Simulation, instead use the term

“composability” to refer to agility (Yilmaz, 2004; Davis & Anderson, 2004). The Defense

Acquisition Guidebook links agility to integration and optimization (Defense Acquisition

University, 2010).

For the Office of Naval Research (ONR), Tangney (2009) desires to make “inter-

esting perturbations” of Naval tasks under which they would like to make measurements in

a calibrated Synthetic Environment for Assessment (SEA). This reconfiguring of an SEA

represents agility.

Agile Methods is different from agility. Agile Methods is a movement in software

development that favors collaboration, interaction, and responsiveness over “documenta-

tion driven, heavyweight software development processes” (Beck, Cockburn, Jeffries, &

Highsmith, 2001; Cohen, Lindvall, & Costa, 2004). Agile Methods may also have value in

visual simulation development, but that is not the focus of this dissertation.

2. Why Agility is Important

Scott (2010) defends the accusations that the U.S. government lacks imagination but

instead contends that “we are simply unable to deploy new ideas as effectively or as quickly

27

as we could.” He cites industrial examples of large-scale agility while the DoD spends tens

of billions of dollars annually that is “rarely reused and difficult to adapt to new threats.”

Lynn III (2010) writes, “Cyberwarfare is like maneuver warfare, in that speed and agility

matter most.”

a. Benefits

Davis and Anderson (2004) give several reasons why agility in software is

important to defense M&S. They provide their reasons as assertions, acknowledging that a

body of literature and the common sense of practitioners agree. Software modules that are

easily reconfigured, repurposed, or integrated are also easier to build at the creation phase.

Such software tends to be easier to understand. It makes testing easier when modules can

be pulled out and tested on their own. Cost can be reduced.

McDowell et al. (2006) point out that agility also helps mitigate risk when

technologies mature at different rates. They also highlight the need to adapt simulations to

different genres of simulations and different real world domains from air to land to sea.

In studying Service Oriented Architectures (SOA) in businesses, several au-

thors highlight the positive impact of agility (TechWeb, 2008; Feig, 2008). Agility is linked

to efficiency in software development and faster time to market.

The OTDRP (Herz et al., 2006) highlights the need to adapt to new “trends,

capabilities, and practices.” By falling behind in software, the DoD has seen costs spiraling

up and a loss of useful software to those on the ground. It encourages the DoD to create

market incentives to increase agility, but they offer no metrics with which to achieve this.

b. Mandates

As mentioned in Section b, the Deputy Chief of Naval Operations saw a

need to “implement agile changes that support rapidly evolving requirements” and to that

end wrote a policy letter directing open architecture principles across the Navy (Edwards,

2005).

28

The AMSMP links a loss of agility in software to a lack of ability to develop

live-virtual-constructive environments that exploit the full range of hardware, software,

ranges, equipment, and other resources that are available. The result is simulations that are

less capable than they could be (Office of the Under Secretary of Defense, 2006).

3. How Agility is Measured

We found very little literature regarding any measurements of agility. The metrics

that we did find are tangentially related and help provide context, but our literature review

did not reveal any agility models that would meet our requirements for differentiating visual

simulation architectures.

Qumer and Henderson-Sellers (2006b) measures agility in organizations using Ag-

ile Methods. He develops four dimensions to measure. One dimension that is closest to our

needs is agility characterization with metrics for Flexibility, Speed, Leanness, Learning,

and Responsiveness. These metrics have a value of 0 or 1 for various phases and segments

depending on the answer to a yes/no question provided for each metric. For example, the

question associated with Flexibility is, “Does the method accommodate expected or unex-

pected changes?” During a planning phase, flexibility may be a 1 but leanness may still be

0. Adding up these values, and dividing by the total number of measurements taken, gives

a fractional value indicating degree of agility. Qumer and Henderson-Sellers (2006a) use

this methodology to analyze two Agile Methods known as XP and Scrum for the purpose

of helping organizations select among competing Agile Method approaches.

4. Summary of Agility

Agility means different things to different people. Therefore, a review of the lit-

erature required casting a much broader net over related topics. Still in all the literature

reviewed, no models suitable for measuring the agility of visual simulation architectures

could be found.

29

D. SUMMARY OF LITERATURE REVIEW

This chapter reviewed literature that identifies openness, reuse, and agility—important

features in software development, especially as it relates to visual simulation. There is some

agreement in definitions and importance, and there were related efforts at measuring these

factors, but we found no quantitative models suitable for our use in measuring openness,

reuse, and agility in visual simulation architectures.

What the literature did reveal are some foundations on which we can build assess-

ment models with confidence. These features of openness, reuse, and agility are not new,

and there is great interest in them. These foundations, built over many years by many peo-

ple, enable assessment models to be built for this dissertation. The literature provided least

benefit with respect to assessing the agility of visual simulation frameworks.

30

III. OPENNESS

In this chapter, we develop and apply a model for assessing openness based on the

definition and need established in Chapter II: Literature Review. The model borrows from

taxonomies and methodologies presented in literature and presents a new composite model

that is subsequently shown to differentiate between two visual simulation frameworks.

A. DEVELOPING THE OPENNESS MODEL

To assess visual simulation frameworks, we want a model that can differentiate

between the parts within a framework, the actions we might take, and do all this across

various issues associated with openness. We assess on a three axis system with four layers

of software, three operations of development, and three issues in openness.

1. Layers and Operations

Anvaari and Jansen (2010) develop a model for assessing the openness of mobile

phone operating systems. For each of four layers of the architecture they consider three

factors, whether or not the factors are possible, and the licensing restrictions associated

with them.

Their breakdown of layers and factors can be applied to visual simulation software

despite the fact that it was developed for mobile phone software. The four layers they

identify are Kernel, Middleware, Native Applications, and Extended Applications. The

three factors they identify are integrating (use existing components), extending (enhance

functionality of components), and modifying (replace a component) the platform (Figure

2).

We use the four layers given by Anvaari and Jansen (2010) and define the layers in

the context of visual simulation frameworks:

• External Applications. The final simulations and applications built with the frame-

work.

31

mentioned are extension or modification of different levels of an
operating system from the lower levels to the higher levels. The
approaches are changing operating system (kernel) itself,
modifying device drivers, installing a network server, adding user
level Plug-Ins, making changes to user level libraries, applications
specific modifications and intercept system calls [21]. Their point
of view about extension approaches is employed to develop the
architectural openness model for this research and is discussed in
the following chapters

4.1 Mobile Software Platforms and Their
Architecture
In the last decade, mobile phones have become programmable
handheld computers which have internet connectivity,
computing power and open application programming
interfaces (APIs) providing prospective platforms for an
infinite set of new mobile services and applications [20]. The
new mobile phones which are usually called smartphones have
both hardware and software parts the same as all computing
systems. The software part is called mobile software platform.
Some authors like Verkasalo use software platform as a synonym
to operating system of mobile devices [20]. Some others like Cho
and Jeon believe that software platform of a system means the
overall structure of the software on the system and operating
system is a part of it [10]. Cho and Jeon consider a layered
architecture for the software platform of typical mobile devices
consists of operating system layer, middleware layer and
applications layer [10]. Layered architecture is an architectural
pattern helps to structure systems that can be decomposed into
groups of subtasks in which each group of subtasks is at a
particular level of abstraction [22]. The software platform of
mobile devices is such a system, therefore the layered architecture
is applicable to the architecture of mobile software platforms. The
suggested model for architecture of mobile software platforms for
this research is the same as proposed architecture by Cho and Jeon
with some modifications. In their model, they have not separated
the default applications which are set by device manufacturer
from the applications developed by third-party community and
installed by users. Since third-party applications have a main role
in defining the openness of a platform, the proposed model for
this research has two different sub-layers in the applications layer:
native applications and extended applications. Native applications
are those developed by device manufacturers and in some
platforms are not modifiable. Extended applications are those
developed by application developers and installed by device users,
so these applications extend the applications layer of the platform.
Middleware layer consists of main libraries and services of the
platform like data storage, virtual machine, multimedia libraries,
etc. When application developers create extended application,
they usually call this layer in their applications instead of calling
the core libraries of the platform. The kernel layer, which in Cho

platform. It consists of the lower level components of the platform
such as device drivers, power management framework, security
framework, etc. Figure 1 shows the proposed architecture for
mobile software platforms.

The architecture of main mobile platforms include Android,
iPhone, Symbian, Blackberry and Windows Mobile is looked by
the lens of this architecture and the results are presented in the

following parts. In the next section, the architectural openness
model which is built based on the proposed architecture is
discussed.

4.2 Architectural Openness Model and
Factors
As presented in the previous part, a mobile software platform like
other software systems has an architecture which is the structure
of the platform. A proposed mobile software architecture that is a
general model and can be applied to different mobile platforms
was shown. To discuss the openness strategy of mobile platforms
based on their architecture, the proposed model is not sufficient

demonstrate platform extension mechanisms and platform
accessibility since these notions have a connection with the
openness concept as discussed before.

The architectural openness model to accommodate the platform
accessibility and platform extension methods, and in a higher
view the platform openness, should illustrate how much and under
which conditions the platform extenders (application developers,

components of the platform and extend its functionality. Two
online resources of Google Android have used and defined
integrate, extend and modify concepts to clarify the openness
notion in the architecture of Android platforms [23][24]. Sim et
al. mention similar meanings when consider integration and
customization as issues in mobile operating systems [25]. To

and definitions are used here:

Integrate a layer: To use the existing components of a layer in a
mobile application via API, Service Call, source code inclusion,
shared data object and other software extensions mechanisms.

Extend a layer: To enhance the functionality of the components
of a layer. The application uses the built-in Google map
application and adds its own functionality on top of Maps is an
example.

Modify a layer: To replace or change the components of a layer.
Writing your own device driver is an example.

The architectural openness model to support the openness strategy
in mobile software platforms is illustrated in the Figure 2.

Applications

Middleware

Kernel

Extended ApplicationsNative Applications

App 1 App 2 App 3 App N...

Integrate
Extend

Modify

Integrate
Extend

Modify

Integrate
Extend

Modify

Integrate
Extend

Modify

App 1 App 2 App 3 App M...

(Services, Libraries,)

(Device Drivers, Power Management, Memory Management,)

Figure 1. Architectural Openness Model for Mobile Software
Platforms

Although the model shows the platform access and extension
methods in different levels, but to demonstrate the openness

87

Figure 2: A model that considers the effort and permissions required to integrate, extend,
or modify a platform (From Anvaari & Jansen, 2010).

• Internal Applications. Applications or tools included with the standard distribution

used either in the building or running of the simulation.

• Middleware. The standard pieces that are included with the framework, often called

“foundation classes” in the case of a programming language.

• Kernel. The core engine that manages the simulation pieces.

The model does not include a holistic analysis of openness, but it measures whether

or not an operation can be performed at a given layer and if so, the licensing restrictions

therein. We retain the operational definitions of Integrate, Extend, and Modify:

• Integrate. To use the existing pieces of a layer via API, service call, source code

inclusion, shared data object, and other software calling mechanisms. An example

would be using the cURL libraries to make HTTP requests.

• Extend. To enhance the functionality of the pieces of a layer beyond just making use

of that layer. An example would be to change the behavior of a camera-following-

an-object routine.

• Modify. To replace or change the pieces of a layer. An example would be replacing

the physics engine.

32

Anvaari and Jansen finish their model with a summary of the “possibility” mea-

surements they made (Figure 3). Their summary provides both a quick look assessment for

differences among the platforms as well as details that can be inspected at particular points

along the axes.

Foundation about integrating, extending or modifying of any
components of the platform, where in kernel layer of the Android
there is some components like power management which users are
only allowed to integrate it and not extend or modify. But the
situation in practice is different and the experiences of developers
show that these two platforms are not as open as they seem since
there are some controls governed by Google and Symbian
Foundation which do not allow commercial developers to make
every desired change to the platform and the target people of
releasing the source code are device manufacturers like HTC. In
this case Android is more open since there is less restriction set by
Google for submitting an extension or modification of the
platform. However, even in practice Android and Symbian are the
most open platforms among current main mobile platforms,
although they are not completely open. After these two platforms,
Windows Mobile and Blackberry are situated near together. There
are not enough materials on the documentation of these platforms
to discuss about accessibility to different layers of the platforms,
but according to the experiences of the developers, Windows
Mobile is more open than Blackberry since kernel layer in
Blackberry is almost close and users cannot access to it directly
but in Windows Mobile users even can write their own drivers for
the device. But on the other hand native applications users can do
more with Blackberry than Windows Mobile. In Windows
Mobile, even integrate the native applications is not possible, but
in Blackberry some native applications that have APIs can be used
by users. The licensing situation for both platforms is almost the
same and in both cases there is some situation that people can use
unsigned applications. The big difference here is that Windows
Mobile can be installed on different devices, but Blackberry is a
proprietary software platform that is installed only on Blackberry
devices. So totally the conclusion is that Windows Mobile is more
open than Blackberry. And finally in the spectrum of openness,
after these two platforms the iPhone is situated which the least
open platform among the main mobile platforms. Although
developers can integrate the kernel layer of the platform in their
applications and in this sense it is more open than Blackberry, but
on the other hand developers can integrate several native
applications in the Blackberry which is almost not possible for
any native applications of the iPhone. So in the case of
accessibility of architectural layers, Blackberry and iPhone are
situated nearly in the spectrum but the main thing that distinguish
the iPhone from Blackberry and brings it to the end of the
spectrum is licensing situation which is very controlled for the
iPhone and restriction set by Apple is much more than other
platforms since every application before submitting to the
application store should be signed by Apple and the process of
quality testing of the application is strongly controlled. Table 2 in
Table 2 summarizes the comparison of openness strategy in the
main mobile platforms based on the architectural aspects and
licensing situation of the platforms.

This study has also some implicit results which are mainly
achieved from the interviews with developers. The interviews
show that most of developers, which are typically commercial
developers, do not care about architectural openness of a
platform. For developers the tools and languages are supported to
develop applications, guides and documentation for developing
and financial aspects of the platforms are more considerable.
When they want to consider the architectural openness of a
platform they more care about higher layers of the platform. The

reason is that first of all they think even if the platform is mostly
open, the lower layers provided by the platform supplier work
well and they do not need to spend time to extend or modify it.
The second reason is that if they modify lower layers such as
components of the middleware or kernel, the application users
need also to change the middleware or kernel of their devices
which is not a practical work. So in their point of view increasing
the openness of a platform and releasing the source code of lower
layers make sense for device manufacturers who want to
customize the platform for their own devices. This result brings
some limitation for this study which is argued in the discussion
section.

Table 2. Comparison of Openness Strategy in the Main Mobile
Software Platforms

A
ndroid

Sym
bian

W
indow

s
M

obile

B
lackberry

iPhone

Factor P L P L P L P L P L

Integrate
extended

applications
Pc Pn Pc Ps Pc Ps Pc Ps Pc Pa

Extend
extended

applications
Pc Pn Pc Ps Pc Ps Pc Ps Pc Pa

Modify
extended

applications
Pc Pn Pc Ps Pc Ps Pc Ps Pc Pa

Integrate
native

applications
Po Pn Pc Ps Np Pc Ps Pc Pa

Extend native
applications Po Pn Po Ps Np Np Np

Modify
native

applications
Po Ps Po Ps Np Np Np

Integrate
middleware Po Pn Po Ps Po Ps Po Ps Po Pa

Extend
middleware Po Pn Po Ps Pc Ps Np Po Pa

Modify
middleware Po Ps Po Ps Np Np Np

Integrate
kernel Po Pn Po Ps Po Ps Np Pa

Extend kernel Pc Pn Po Ps Pc Ps Np Pc Pa

Modify
kernel Pc Ps Po Ps Pc Ps Np Np

P = Possibility, L = Licensing Status, Po = Possible, Pc = Possible for
some components, Np = Not possible, Pn = Permission is not needed, Ps
= in some cases permission is needed, Pa = Permission is always needed

7. DISCUSSION
The first limitation of this research is realized in the literature
review stage. As discussed in related work part, although there is
some literature compares most of studied mobile platforms of this

90

Figure 3: Anvaari & Jansen (2010) analyze mobile smart phone architectures with their
openness model, which we use as a starting point for our model which is more all-
encompassing of the notion of openness.

They find that not all organizations are concerned about all the layers and opera-

tions. For many developers, as long as they can integrate, extend, or modify their own

extended applications, that is sufficient for them. This helps to explain why developers

33

continue to create iPhone (now iOS) apps despite the cries of open source advocates that

the developers’ hands are shackled on that platform. One developer humorously explains

that “if a platform is open enough to make a lot of money for him, then the platform is

interesting for him.”

2. Issues

Maxwell (2006) defends the idea that value can be created through openness and

presents a useful taxonomy of openness: open standards, open licensing, and open innova-

tion. These three issues within openness form the basis for our third axis for analysis.

Open standards refer to the communication mode and content of a system. This

might include a program’s application programming interface (API), the data formatting

and syntax offered in the Extensible 3D (X3D) graphics format, or the binary byte ordering

of the Internet Protocol (IP). There is such a need for standards that there are many national

and international standards bodies addressing various technical fields such as the Internet

Engineering Task Force (IETF) for the Internet and the International Telecommunication

Union (ITU) for telephone communication.

Open licensing refers to what a user is permitted to do with a piece of software.

Licenses can be very restrictive, such as requiring a student-licensed copy of software not

be used for commercial purposes, or very open, such as the entire source for a system being

made available for review and modification.

Open innovation refers to a community being able to collaborate and share ideas

and software. Big ideas from small parties can find their way to a wide audience when

innovation is encouraged, and innovators are able to leverage the work done by others,

standing on the shoulders of giants.

• Standards. The communication mode and content of a system. Examples would be

a program’s API, an XML schema, or TCP/IP.

• Licensing. What a user is permitted to do with a piece of software. A user may be

restricted in use or even permitted full access to source code.

34

• Innovation. A community being able to collaborate and share ideas and software.

This spans both the propensity for the software to encourage collaboration as well as

actual collaboration happening within the using community.

3. Criteria

For each layer and each operation, criteria are established for assessing the open-

ness of each operation on each layer with respect to standards, licensing, and community

innovation. Unlike the Anvaari and Jansen model, which asks if it is possible to integrate,

extend, or modify each layer, we ask how does the product’s handling of standards, licens-

ing, and innovation help to integrate, extend, or modify each layer.

This model uses categorical classifications to assess openness but avoids the value

judgements embedded in the red, yellow, green color scheme in favor of green, yellow,

blue.

a. Standards

In assessing how standards affect an operation on a layer, we must consider

the kind of software and methods of integration that are offered, if any. In a software

library, open might mean having integration take place by documented API calls that were

developed in collaboration with many parties. A less open alternative might be documented

API calls that are closed to changes aside from the framework’s vendor. Not open at all

might mean not being able to integrate or only through unpublished or private APIs. In

contrast a web oriented framework might regard open as having integration take place over

Hypertext Transfer Protocol (HTTP) with Extensible Markup Language (XML) data in a

Simple Object Access Protocol (SOAP) message whose formatting is discovered in the

Universal Description, Discovery, and Integration (UDDI) and which was published by the

World Wide Web Consortium (W3C).

With respect to standards, the following classifications are used:

• Is = The techniques for operating on a layer are based on documented, open stan-

dards that include community participation.

35

• IIs = The techniques for operating on a layer are partially standardized, or the stan-

dard is not subject to community participation.

• IIIs = There are no techniques for operating on a layer or the techniques involve

unsupported “hacks” or direct source code editing.

b. Licensing

In assessing how licensing applies to an operation on a layer, we consider

permissions both for redistribution and access to different parts of the framework. The gov-

ernment has an interest in making sure it has access to all parts of a framework necessary

and that models developed by one organization are not locked away from other govern-

ment organizations—or even different projects in the same organization—due to licensing.

We might expect to see less differentiation among the layers and operations here than in

standards since software tends to be licensed en masse, not piece by piece.

Closed source software often has no provision for viewing its source code.

Some vendors may charge a fee and require a non-disclosure agreement before allowing

access to source code. Some vendors, whether open or closed source, make a good deal of

sample code available to help developers at the application layer. Sometimes it is possible

to integrate into the kernel of a framework through documented APIs (some open standards,

IIs) but have no access to the kernel source code.

With respect to licensing, the following classifications are used:

• Il = Users have the right to access, modify, and redistribute both their finished

simulation and the framework’s source code without express permission.

• IIl = Users are restricted in how they may access, modify, or redistribute either their

finished simulation or the framework and its source code.

• IIIl = Users may not redistribute their finished simulations or have no access to the

framework’s source code.

36

c. Innovation

In assessing how innovation applies to an operation on a layer, we consider

both the encouragement offered to collaborate as well as the collaboration that is already

happening. The government is interested in the benefits that many smaller acquisition

programs can contribute to everyone, and with a thriving ecosystem with collaboration and

shared ideas and products, the entire community is enriched.

Assessing a framework based on its community involvement may seem un-

fair to the framework, but the goal is not just to assess a piece of software on its own but

rather how appropriate the framework is for use in acquisition simulation. This holistic

approach centers on the needs of the user rather than on trying to isolate the framework

from its intended audience. This also means that “involvement” must be defined within the

proper scope. Niche markets would not be expected to have the same number of innovating

participants as something with mass-market appeal. New frameworks with few users will

need to be assessed based on the innovation demonstrated within the current user base.

With respect to innovation, the following classifications are used:

• Ii = Software and vendor lends itself to and a community takes advantage of inno-

vation.

• IIi = Software or vendor may discourage or a community may not be greatly inter-

ested in innovation.

• IIIi = Software or vendor restricts or there is no community of interest seeking

innovation.

d. Summary of Criteria

The openness criteria is summarized in Table 4. For each issue, the criteria

are applied to each layer and operation.

37

Table 4: Assessment criteria for the three openness three issues that are applied to the four
layers and three operations.

Issue Rating Criteria

Standards

Is
The techniques for operating on a layer are based on documented,
open standards that include community participation.

IIs
The techniques for operating on a layer are partially standardized,
or the standard is not subject to community participation.

IIIs
There are no techniques for operating on a layer or the techniques
involve unsupported “hacks” or direct source code editing.

Licensing

Il

Users have the right to access, modify, and redistribute both their
finished simulation and the framework’s source code without ex-
press permission.

IIl

Users are restricted in how they may access, modify, or redis-
tribute either their finished simulation or the framework and its
source code.

IIIl
Users may not redistribute their finished simulations or have no
access to the framework’s source code.

Innovation

Ii
Software and vendor lends itself to and a community takes advan-
tage of innovation.

IIi
Software or vendor may discourage or a community may not be
greatly interested in innovation.

IIIi
Software or vendor restricts or there is no community of interest
seeking innovation.

38

4. Model for Assessing Openness

Building on the model developed by Anvaari and Jansen (2010), we present a visual

model that assesses openness both at a glance, in color and weight of markers, and in detail

(Table 5). This follows the principles of small multiples, which encourages a visual cue to

be repeated along axes and present both detailed information and information at a glance

(Tufte, 2001).

The decision maker gains insight both in the process of applying the model and in

examining the model. In applying the model, a deep and structured understanding of the

models is developed. In examining the model, a decision maker may study the various as-

pects of proposed frameworks and consider where a less-open framework may be tolerated

without adding unnecessary risk.

Table 5: A model for assessing the openness of simulation frameworks.

Framework 1 Framework 2

Layer Operation Std Lic Inn Std Lic Inn

External
Applications

Integrate Is Il Ii . . .
Extend IIs IIl IIi
Modify IIIs IIIl IIIi . . .

Internal
Applications

Integrate . . .
Extend
Modify

Middleware
Integrate
Extend
Modify

Kernel
Integrate
Extend
Modify . . .

Std, s = Standards; Lic, l = Licensing; Inn, i = Innovation;
I, II, III are classifications.

39

5. Weights for User Assigned Value Systems

If a final numeric score is desired, weights can be assigned to the categories accord-

ing to what layers, operations, or issues are most important. When summed, these weights

provide for a tailored assessment of the frameworks. Here is where value can be applied,

because the user specifies what is important.

Let L be the set of layers L = {External Applications, Internal Applications, Mid-

dleware, Kernel} and l ∈ L be a layer. Let O be the set of operations O = {Integrate,

Extend, Modify} and o ∈ O be an operation. Let I be the set of issues {Standards, Li-

censing, Innovation} and i ∈ I be an issue. Let Rloi be the categorical rating assigned

to a framework at the given layer, operation, and issue. Let wloi(Rloi) be the weighting

function that returns the user assigned value for a given Rloi. Then the overall openness

value VO of a framework is given by Equation 1:

VO =
∑
l∈L

∑
o∈O

∑
i∈I

wloi(Rloi) (1)

The development of these weights for a particular use case is beyond the scope of

this dissertation, but they may be used to help score frameworks against the specific needs

of a program manager.

B. STUDY 1: ASSESSING OPENNESS

To demonstrate the feasibility of this assessment model, two simulation frame-

works Delta3D and DMZ were selected and assessed using the methodology presented

here. Of the hundreds of game engines available (M. Lewis & Jacobson, 2002), these two

frameworks were selected because they represent two fundamentally different approaches

to building visual simulation frameworks, often called game engines. They are also both

readily available for download and inspection. The study demonstrates the feasibility of

measuring openness to distinguish visual simulation architectures.

40

1. Methodology

After selecting the frameworks, the layers were identified and the criteria applied.

Applying the model to the frameworks required an understanding of the frameworks in-

volved. A careful study of the two frameworks preceded this study.

The layers of the software were defined for each framework. Specific tools, names-

paces, folders, source code, and other pieces of the frameworks were identified. Clarity

was required to ensure that the criteria were applied cleanly to the layers without one area

bleeding over into another.

With the criteria laid out, each combination of layer, issue, and operation was ex-

amined. The criteria determined the categorical ratings to assign.

The ratings were compiled into a table, which is presented as a whole as well as

divided into areas of interest, according to the distinctions made by the model.

2. Delta3D

Delta3D (Figure 4) is a successful open source game engine developed at the Naval

Postgraduate School (NPS) in Monterey, CA. It has over six years and $1 million of de-

velopment behind it. Its staff of programmers both maintain the framework and use the

framework for research projects. It is also used by other organizations around the world. It

boasts many features and integrates a number of open source libraries such as Open Scene

Graph for rendering, Open Dynamics Engine for physics, and OpenAL for audio, to name

a few.

The Delta3D source consists of 160,000 lines of code and nearly 1,200 classes. It

is written in C++. Table 6 lists the major namespaces into which Delta3D is divided and

the size of each. The programming team uses good object-oriented programming prac-

tices. The code is representative of the conventional approach to game engine develop-

ment. Much of the development team had prior experience with the Unreal engine by Epic

Games, one of the largest game engines on the market. Consequently, Delta3D was de-

veloped following many Unreal paradigms. Classes are structured reasonably around the

problem domain with the ubiquitous “Actor” class tying much of the functionality together.

41

Figure 4: Delta3D is an open source game engine used by many projects around the world
and has a staff of programmers.

Table 6: Delta3D consists of many classes divided into namespaces related to their purpose.

Namespace Classes Lines of Code

dtABC 31 3,381
dtActors 98 10,616
dtAI 97 8,101
dtAnim 55 6,535
dtAudio 14 2,927
dtCore 155 24,204
dtDAL 111 13,397
dtDirector 98 15,080
dtDIS 16 1,589
dtGame 103 9,555
dtGUI 19 3,206
dtHLAGM 46 9,128
dtInspectorQt 21 2,243
dtLMS 13 711
dtNet 3 360
dtNetGM 11 1,971
dtQt 46 6,409
dtScript 1 57
dtTerrain 54 5,055
dtUtil 96 10,577
NA 57 1555
psGeodeTransform 1 18
sigslot 43 2090

42

Delta3D also comes with a number of “helper programs,” which we call Internal

Applications (Figure 5). One is called STAGE (Figure 5a), which helps in developing envi-

ronments with buildings, terrain, actors, and more and can be thought of as a type of “level

editor” for Delta3D. The objects described in STAGE can be manipulated programmati-

cally by calling the various actors’ functions. A new recently-released tool called Director

(Figure 5b) provides a graphical environment for even non-programmers to script behaviors

in a simulation.

(a) Delta3D’s STAGE (b) Delta3D’s Director

Figure 5: Delta3D has powerful tools to help build simulations such as STAGE for building
environments and Director for scripting behaviors.

3. DMZ

DMZ (not an acronym) (Figure 6) is a new open source, component-based game

engine developed at Naval Postgraduate School (NPS). It grew from a frustration that

so many student projects could not be easily reintegrated into one source tree because of

the fragility of the code. The classes and functionality developed by students touched too

many other parts of the software causing a dependency quagmire. DMZ developer Randall

Barker created a new game engine focused on developing small, reusable chunks of code

that center around functionality and behavior rather than object encapsulation.

What he “invented” was service-oriented, component-based programming applied

to visual simulation, though he explains it as just a natural engineering solution to the

classic dependency problem he had always fought in OO programming. Note how well

43

this maps to the recommendation made by the Open Technology Development Roadmap

Plan (Herz et al., 2006): “This report recommends shifts in the process of technology

acquisition from closed, locked-in black box systems to open and modular approaches.

These approaches are based on open standards, services based architectures, open source

collaboration, and reference open source implementations.”

Figure 6: DMZ is a new open source, component-based game engine used at NPS.

The DMZ source consists of over 98,000 lines of code and over 400 classes in over

800 files. It is written in C++, but simulations can also be constructed in the JavaScript or

Lua scripting languages. Although the architecture is component-oriented, it is still built

with classes and objects. All DMZ code resides in a single namespace. The developers

instead group code in directories. Table 7 lists the major headings into which DMZ is

divided and the size of each.

It is interesting and perhaps not surprising to observe that there are a greater number

of verb class names than normally found in object oriented programming (Table 8). In

Delta3D 5.5% of the classnames end in verbs, while in DMZ 9.7% of the classnames end

in verbs. While not a scientific conclusion, this does suggest that DMZ is service (verb)

oriented instead of object (noun) oriented.

DMZ does not have much in the way of Internal Applications, as it is not as mature

as Delta3D and has a smaller staff of developers. There are some scripts that generate

boilerplate code. These scripts probably contribute to some of the higher-than-expected

44

Table 7: DMZ consists of many classes divided by directory according to their purpose.

Directory Classes Lines of Code

frameworks/archive 11 2,530
frameworks/audio 11 1,962
frameworks/entity 28 6,849
frameworks/event 10 2,317
frameworks/input 18 2,659
frameworks/net 27 8,754
frameworks/object 27 5,727
frameworks/qt 73 14,185
frameworks/render 45 10,238
frameworks/weapon 6 1,288

foundation/libs 26 1,879
foundation/plugins 10 1,760

kernel/runtime 68 5,427
kernel/system 19 1,484
kernel/types 31 2,459

Table 8: The object-oriented Delta3D tends to be organized around nouns and adjectives,
while the service-oriented DMZ tends to be organized around verbs.

Framework Sample Class Names

Delta3D

BaseWaterActor
AiActorRegistry
Animatable
SoundCommand
SkyDome

DMZ

EntityPluginArticulate
EntityPluginFollow
InputPluginChannelSwitch
ObjectPluginHighlight
ObjectPluginSelect

45

Weighted Methods per Class metrics since the scripts generate a number of placeholder

methods that are often never used. Plans to create a “level editor” type of tool exist, but

no such tool was available during this research for assessment. There is a “make” system

called lmk for compiling components. The system is written in a scripting language called

Lua (lmk = Lua make). This is used extensively in the development of DMZ simulations.

4. Identifying Software Layers

A clear delineation must be made for each of the four layers. Some layers will have

a good deal of code behind them while others may be minimal or non-existent. Table 9

maps the four layers to specific parts of the frameworks.

Table 9: Layers for the two frameworks Delta3D and DMZ are broken out to aid in assess-
ing openness.

Framework Layer Description

Delta3D

External
Applications

The final simulations and applications built with the
framework.

Internal
Applications

Tools stored in utilities folder (AIUtility, Anima-
tionViewer, Exporters, GameStart, LMS, MapDump,
ObjectViewer, ParticleEditor, STAGE).

Middleware Code not in the Kernel namespaces.

Kernel Code in the dtCore, dtGame, and dtDAL namespaces.

DMZ

External
Applications

The final simulations and applications built with the
framework.

Internal
Applications

Scripts in the scripts folder and the Lua “make”
(lmk) system.

Middleware Code in the frameworks folder.

Kernel Code in the foundation and kernel folders.

46

5. Applying Criteria

The process of applying the criteria requires stepping through each combination of

layer and operation to compare the three issues against the criteria established earlier.

a. External Applications

In both frameworks the openness of the the external applications is deter-

mined in large part by the developer of the final simulations, not the framework itself.

Whether Extending, Integrating, or Modifying, a common theme is that there is little influ-

ence by the framework on what developers do.

Delta3D

With respect to Standards, developers Integrating, Extending, or Modifying

another developer’s External Applications are not guaranteed to have access via open stan-

dards. Delta3D neither requires nor forbids that developers use open standards, and there

is no mechanism in the Delta3D architecture itself to enable it. Therefore, only a rating of

IIs is appropriate for Delta3D for Integrating, Extending, or Modifying.

With respect to Licensing, developers working with Delta3D are bound by

the Lesser GNU Public License (LGPL). This license does not require that developers

using Delta3D to produce External Applications release these applications as open source.

However, they are not forbidden from releasing these applications as open source either.

Delta3D External Applications are rated IIl for licensing for Integrating, Extending, or

Modifying.

With respect to Innovation, there is no provision in Delta3D to encourage

developers of External Applications to seek collaboration and sharing within their appli-

cations. Although it is not prohibited, no evidence could be found of it occurring. Appli-

cations built with Delta3D are likely to be “one way” applications that are built once and

not used by anyone else. Delta3D External Applications are rated IIIi for innovation for

Integrating, Extending, or Modifying.

47

DMZ

With respect to Standards, developers Integrating, Extending, or Modifying

External Applications have an advantage in DMZ. They can tap into the Object module,

which manages the data defining the world of the simulation, or the Event module, which

manages communication among modules and plugins. Even without published information

for an External Application, the very architecture of DMZ enables developers to Integrate,

Extend, or Modify applications in the same way regardless of the source. The standardized

XML configuration files and the inspectable Object and Event modules aid developers in

interacting with applications in a standard and straightforward way. Integrating, Extending,

and Modifying DMZ External Applications are rated Is for Standards.

With respect to Licensing, developers working with DMZ are bound by the

Massachusetts Institute of Technology (MIT) License, one of the shortest of all open source

licenses. It levies few requirements on developers except the need to give credit to the

original DMZ developers and to hold DMZ blameless. Again, developers are not required

to or forbidden from releasing External Applications as open source. Therefore, DMZ

External Applications are rated IIl for licensing for Integrating, Extending, or Modifying.

With respect to Innovation, the very architecture of DMZ makes innovation

of External Applications possible. Applications are made up of composable elements that

can be shared and on which developers can collaborate. However, DMZ being a new de-

velopment and mostly used in-house, the only evidence of innovation is in a very small

community. DMZ External Applications are therefore rated IIi for innovation for Inte-

grating, Extending, or Modifying.

b. Internal Applications

The characteristics of Internal Applications are directly influenced by the

frameworks themselves. The nature and quality of the Internal Applications affect how

developers are able to make use of the frameworks, and their openness can have lasting

effects.

48

Delta3D

With respect to Standards, Delta3D has numerous tools to aid in the devel-

opment of rich 3D worlds. They consist mostly of standalone tools, but they interoperate

through shared data files. The STAGE tool for example supports the .ive file type, which

comes from the open source Open Scene Graph (OSG) rendering engine. Unfortunately

the .ive file type does not have a published specification, is defined only in the imple-

menting code within OSG, and is now obsolete (OSGForum, 2011). The replacement file

type .osg also has no published file format. Despite this, the community still uses .osg

files as one of many standard Three Dimensional (3D) file formats.

Integrating with Delta3D Internal Applications consists primarily of loading

data files, and as such Delta3D makes a good effort to support a number of standard, either

open or de facto, file types and is rated Is for Standards.

Extending or Modifying Delta3D Internal Applications is a different matter

altogether. There is no approved technique for extending their behavior. The code is open

source, fortunately, but that is a different issue. There is no plugin architecture or scripting

or any technique (other than manipulating source code) for making these changes to Inter-

nal Applications. Extending or Modifying Delta3D Internal Applications are rated IIIs

for Standards.

With respect to Licensing, the Delta3D Internal Applications are released

under the LGPL (or the GNU Public License (GPL) in the case of STAGE which uses the

Qt library, also released under GPL). As such developers are not restricted in their use

or redistribution. Integrating, Extending, or Modifying Delta3D Internal Applications are

rated Il for Licensing.

With respect to Innovation, Delta3D Internal Applications do not have a

community collaborating or sharing with them nor is there anything built-in to facilitate

this. These are powerful and useful tools provided by the Delta3D development team but

are final products themselves—not something with which to innovate a new solution. In-

49

tegrating, Extending, or Modifying Delta3D Internal Applications are rated IIIi for Inno-

vation.

DMZ

DMZ Internal Applications consist of a few scripts and the lmk build sys-

tem. Integrating with these tools is as simple as command line calls. Therefore, Integrating

with DMZ Internal Applications is rated Is for Standards.

Other than editing the scripts or the lmk build system, there is no method

for Extending or Modifying DMZ Internal Applications. Again, the code is open source,

but that is a different issue, and since these Internal Applications are not themselves built

with DMZ, which does provide a standard mechanism for changing behavior, Extending or

Modifying DMZ Internal Applications are rated IIIs for Standards.

With respect to Licensing, the DMZ Internal Applications are released un-

der the MIT license. As such developers are not restricted in their use or redistribution.

Integrating, Extending, or Modifying DMZ Internal Applications are rated Il for Licens-

ing.

With respect to Innovation DMZ Internal Applications do not have a com-

munity collaborating or sharing with them nor is there anything built-in to facilitate this.

These are scripts to aid in DMZ development, not something with which to innovate a new

solution. Integrating, Extending, or Modifying DMZ Internal Applications are rated IIIi

for Innovation.

c. Middleware

The Middleware is the “meat” of the frameworks. These are the libraries,

classes, plugins, and more that developers use in building their simulations. It is the Mid-

dleware that perhaps has the greatest influence on the day to day development of a simula-

tion.

Delta3D

With respect to Standards, Delta3D Middleware can be Integrated through

standard C++ function calls through published headers. The mechanism for integrating

50

with with the libraries is open, documented, and has some community participation. Inte-

grating Delta3D Middleware is rated Is for Standards.

Extending Delta3D Middleware could involve something as simple as sub-

classing a library class and using the new child class in place of the parent, or it could re-

quire changes to the original source code, as with Internal Applications. Extending Delta3D

Middleware is rated IIs for Standards.

There is no approved technique for Modifying the Delta3D Middleware

aside from editing the source code. Therefore, Modifying Delta3D Middleware is rated

IIIs for Standards.

With respect to Licensing, Delta3D Middleware is released under the LGPL.

As such, developers are not restricted in their use or redistribution. Integrating, Extending,

or Modifying Delta3D Middleware is rated Il for Licensing.

With respect to Innovation, Delta3D Middleware has some community in-

volvement for collaboration and sharing, but the software is not particularly suited to users

making unexpected and innovative uses of other people’s work. Some such sharing goes on

within the halls of NPS as students share code, but this does not achieve high innovation.

Integrating Delta3D Middleware is rated IIi for Innovation.

Trying to Extend or Modify Delta3D Middleware is even less friendly to

Maxwell’s (2006) concept of Innovation. Extending and Modifying Delta3D Middleware

is rated IIIi for Innovation.

DMZ

With respect to Standards, DMZ Middleware can be Integrated through the

standardized calls to the Object module or Event module, and these calls can be made with

C++ or JavaScript. Further integration is possible with simple configuration of the XML

files that define an application. Integrating DMZ Middleware is rated Is for Standards.

Extending or Modifying DMZ middleware is possible through the same

mechanism by which one Integrates. This is an architectural benefit of having loosely

coupled components that communicate through restricted mechanisms, namely the Object

51

and Event modules. The XML configuration files permit easy swapping out of components

making Modifying as normal an operation as Integrating, possibly more so. Extending and

Modifying DMZ Middleware is also rated Is for Standards.

With respect to Licensing, DMZ Middleware is released under the MIT li-

cense. As such, developers are not restricted in their use or redistribution. Integrating,

Extending, or Modifying DMZ Middleware is rated Il for Licensing.

With respect to Innovation, DMZ Middleware Integration is well-suited to a

collaborative and sharing environment. Component purpose and function are isolated, and

there are simple, standardized techniques for composing applications. To date, there is not

a DMZ community to speak of, except the development team that built and uses DMZ, and

here power of innovation is used to good effect as one person’s components are composed

into another’s project. Although the promise for good innovation is present, there is little

community for proof. Integrating DMZ Middleware is rated IIi for Innovation.

Extending and Modifying DMZ Middleware enjoys the same promise of In-

novation, and some proof of this is borne out in its development team. Component behavior

can be Extended or Modified using the same technique as Integration, but as with Integra-

tion, there is little community for proof. Extending and Modifying DMZ Middleware is

rated IIi for Innovation.

d. Kernel

The Kernel is the portion of the framework that “makes it tick.” Developers

do not generally need access to the Kernel for defining their simulations, though they likely

will access it in some way in order to run their simulations.

Delta3D

With respect to Standards, the Delta3D Kernel can be Integrated through

standard C++ function calls through published headers. As with the Middleware, the mech-

anism for integrating with the kernel is open, documented, and has some community par-

ticipation. Integrating the Delta3D Kernel is rated Is for Standards.

52

Extending the Delta3D Kernel can be achieved easily through inheritance or

with more difficulty through editing source code. There are no standardized techniques or

architectural allowances for enhancing the behavior of the Kernel. Extending the Delta3D

Kernel is rated IIs for Standards.

There is no approved technique for Modifying the Delta3D Kernel aside

from editing the source code. Therefore, Modifying the Delta3D Kernel is rated IIIs for

Standards.

With respect to Licensing the Delta3D Kernel is released under the LGPL.

As such, developers are not restricted in their use or redistribution. Integrating, Extending,

or Modifying DMZ Middleware is rated Il for Licensing.

With respect to Innovation, the Delta3D Kernel is situated in a similar way

to the Middleware which, although it is possible to collaborate and share innovative so-

lutions that Integrate with the Kernel, there is little community taking advantage of it.

Integrating the Delta3D Kernel is rated IIi for Innovation.

Extending and Modifying the Delta3D Kernel is not well suited to innova-

tion, and there is no community of activity there. Extending and Modifying the Delta3D

Kernel is rated IIIi for Innovation.

DMZ

With respect to Standards, the DMZ Kernel can be Integrated through stan-

dard C++ function calls through published headers like Delta3D, but unlike the rest of

DMZ, the Kernel is not itself a component architecture (although some parts of the foundation

directory are minor components). The DMZ Kernel is not well-documented, and this im-

pairs a developer’s ability to use it. It is instead the mechanism that loads components and

enables their interconnections. Integrating the DMZ Kernel is rated IIs for Standards.

Extending or modifying the DMZ Kernel can only be accomplished through

editing the source code. There is little room even for extension by inheritance. Extending

and Modifying the DMZ Kernel is rated IIIs for Standards.

53

With respect to Licensing, the DMZ Kernel is released under the MIT li-

cense. As such developers are not restricted in their use or redistribution. Integrating,

Extending, or Modifying DMZ Middleware is rated Il for Licensing.

With respect to Innovation, the DMZ Kernel can enjoy collaboration and

sharing of innovative ways to Integrate the Kernel, but there is little community taking

advantage of it. Integrating the DMZ Kernel is rated IIi .

Extending and Modifying the DMZ Kernel does not enjoy the same benefits

as its Middleware, which is component based. Changing the Kernel requires editing its

source code, and there is no community activity there. Extending and Modifying the DMZ

Kernel is rated IIIi for Innovation.

6. Results

We gain insight by applying the criteria, and the results of the openness model

applied to these two frameworks is summarized in Table 10. Although this example only

shows us two frameworks of the many that may be assessed in the future, it demonstrates

the usefulness of the model’s contribution and its success in being able to differentiate

between two visual simulation frameworks—two open source frameworks at that. Some

observations may be made regarding the model.

Assigning notional weights to the weighting function allows for further analysis.

These weights would be customized according to the needs of the program manager. As-

sume a weight of 1 for I , 2 for II , and 3 for III (Equation 2).

wloi(Rloi) =


1, if Rloi = I

2, if Rloi = II

3, if Rloi = III

, ∀ l, o, i (2)

With a set of possible weights provided and focusing on the development opera-

tions, we can plot how the model differentiates between frameworks. Figures 7 and 8 show

the results of plotting the weighted values as a stacked bar chart.

54

Table 10: Because Openness is more than licensing, these two example open source simu-
lation frameworks are not equal with respect to openness.

Delta3D DMZ

Layer Operation Std Lic Inn Std Lic Inn

External
Applications

Integrate IIs IIl IIIi Is IIl IIi
Extend IIs IIl IIIi Is IIl IIi
Modify IIs IIl IIIi Is IIl IIi

Internal
Applications

Integrate Is Il IIIi Is Il IIIi
Extend IIIs Il IIIi IIIs Il IIIi
Modify IIIs Il IIIi IIIs Il IIIi

Middleware
Integrate Is Il IIi Is Il IIi
Extend IIs Il IIIi Is Il IIi
Modify IIIs Il IIIi Is Il IIi

Kernel
Integrate Is Il IIi IIs Il IIi
Extend IIs Il IIIi IIIs Il IIIi
Modify IIIs Il IIIi IIIs Il IIIi

Std, s = Standards; Lic, l = Licensing; Inn, i = Innovation;
I, II, III are classifications.

Integrate Extend Modify

Comparison of Weighted Ratings for Standards

Delta3D DMZ Delta3D DMZ Delta3D DMZ

External Applications
—

Internal Applications
—

Middleware
—

Kernel

Figure 7: The two frameworks differ with respect to standards and development operation.

55

Integrate Extend Modify

Comparison of Weighted Ratings for Innovation

Delta3D DMZ Delta3D DMZ Delta3D DMZ

External Applications
—

Internal Applications
—

Middleware
—

Kernel

Figure 8: The two frameworks differ with respect to innovation and development operation.

7. Insights Gained

Not only does the model differentiate between the two frameworks, but the pro-

cess of applying the model reveals insights. These insights, some examples of which are

presented below, are an additional benefit of the model.

a. External Applications

One might remark that the External Applications section looks rather “bor-

ing” or has “low variability.” This reminds us that External Applications are built by third

parties, and that because of the latitude afforded by the licensing, developers using either

framework may or may not generate open applications.

That the architecture of DMZ permits even third party applications to be

manipulated in a standard fashion is a benefit that should not be overlooked. The govern-

ment should be pleased that code that it pays for is open and accessible for use by other

agencies.

b. Uniformity Across Operations

Although Delta3D has some variability across the operations Integrate, Ex-

tend, and Modify, DMZ shows little differentiation, especially in Middleware. This high-

lights a potential advantage of the component architecture in that it makes operations on

the code more uniform. This should be seen as a big win for DMZ and possibly component

56

architectures in general. On the other hand Delta3D has consistency between Middleware

and Kernel, whereas DMZ’s Kernel is entirely different from its Middleware. Depending

on the needs of the project, one may win out over the other.

c. Open Source License

It might come as a surprise to see a IIl rating for both frameworks for

External Applications since both frameworks are open source, but this highlights an inter-

esting point about licensing. The licenses used for these frameworks do not require that

External Applications be released as open source software. From one person’s point of

view, this may be a negative, because the work that a third party develops will not be ac-

cessible. From that third party’s point of view, this may be desirable, because they are

not forced to release their source code. The GPL is the classic example of a “viral” open

source license that forces developers to release subsequent software as GPL. This would

have been rated Il because of its strong insistence on open licensing, but whether or not it

is a “good” thing is subjective.

C. SUMMARY

We have successfully shown that our openness model differentiates between two

visual simulation frameworks and that we gain valuable insight in the process of applying

and interpreting the model. The model contributes a new approach and tool for program

managers and others to assess the nature of visual simulation frameworks with respect to

openness.

Breaking out openness into more than just licensing, which is often what people

think of when they hear “open,” aided in the differentiation between frameworks. The

standards issue in particular revealed architectural differences between the two frameworks

we tested. Breaking out the operations revealed a valuable uniformity in interacting with

one of the frameworks.

57

Weighting the categories according to layer, operation, and issue allows for cus-

tomizing the model according to the values of a particular user. This also provides a nu-

merical summary from the categorical data and may aid in analysis and decision support.

58

IV. REUSE

In this chapter, we develop and apply a model for assessing reuse based on the def-

inition and need established in Chapter II: Literature Review. The model uses established

software metrics and applies them in a new way in order to differentiate visual simulation

frameworks based on their potential for reuse. These metrics are acknowledged to relate

not only to reusability but also to general quality as well. We conduct a study in which we

show that the model differentiates between two visual simulation frameworks.

A. DEVELOPING THE REUSE MODEL

We learned from Chapter II: Literature Review that there are internal and external

attributes that affect reusability. Some external attributes that affect reusability are com-

prehensibility and maintainability. Some internal attributes that are related to these are

complexity, coupling, and cohesion. We select relevant metrics for complexity, coupling,

and cohesion and determine criteria for estimating transition points in the values of those

metrics.

1. Complexity, Coupling, and Cohesion Metrics

Two major complexity metrics for procedural programming, McCabe (1976) and

Halstead (1977), have survived as viable techniques for estimating complexity. The McCabe

technique is still used in estimating complexity of methods within a class. This is used

sometimes in the CK metric WMC, which is discussed in this chapter. Both techniques are

often available in software development tools available to programmers.

McCabe (1976) describes a graph-theoretic, lexical, complexity measure that in-

spects the potential flow of execution through a program. Changes to a program flow re-

sulting from such structures as if statements and for loops add to the complexity count.

This metric is based on the decision structure of a program and is independent of the size,

e.g., adding a function does not increase the potential paths of execution.

59

McCabe defined the metric in terms of graph theory. The cyclomatic number v(G)

of a graph G with n vertices, e edges, and p connected components is

v(G) = e− n+ p. (3)

The examples given in Figure 9 help illustrate how the calculations are affected

by some common control structures. In practice one often counts the predicates that are

directly observable in source code and adds one, which McCabe proves to be equivalent to

the graph-theoretic formulation.

Sequence
v = 1 - 2 + 2 = 1

If Then Else
v = 4 - 4 + 2 = 2

While
v = 3 - 3 + 2 = 2

Until
v = 3 - 3 + 2 = 2

Figure 9: McCabe’s cyclomatic complexity measures the possible paths of execution
through a program.

McCabe found evidence that code with higher complexity values was less reliable

and more “troublesome.”

The CK suite of metrics are grounded in theory, relevant to OO programming, and

validated empirically. Because of the importance of class design (Champeaux, Lea, &

Faure, 1992), the CK metrics focus on measuring the complexity in the design of classes.

a. Weighted Methods per Class

Weighted Methods per Class (WMC) is a weighted sum of the count of

methods in a class. S. R. Chidamber and Kemerer intentionally do not require how to

weight the methods, suggesting that one could use a more traditional (procedural) com-

plexity metric but that it is best left as an implementation decision by the practitioner. Li

60

and Henry (1993a) assume the use of McCabe’s cyclomatic complexity. With a weight of

1 for all methods, the metric is simply the number of methods in each class.

To calculate WMC for a class A, there are at least two methods:

• Sum the chosen complexity metric for each method in classA. IfmAi is method i of

class A with n methods and |mAi| is the chosen complexity metric for the method,

then

WMC(A) =

n∑
i=0

|mAi|. (4)

• Assume complexity of each method is the same, and count the number of methods

in A. This technique is popular because of its simpler implementation and because

there is disagreement over which complexity metric ought to be used.

They make several observations:

• The number of methods and the complexity of methods involved is a predictor of

how much time and effort is required to develop and maintain the class.

• The larger the number of methods in a class the greater the potential impact on chil-

dren, since children will inherit all the methods defined in the class.

• Classes with large numbers of methods are likely to be more application specific,

limiting the possibility of reuse.

b. Depth of Inheritance Tree

Depth of Inheritance Tree (DIT) relates to scope and is a measure of how

many ancestor classes could potentially affect this class.

To calculate DIT for class A one counts the number of parent classes one

must traverse to reach the root. A root object such as java.lang.Object would have

DIT = 1.

61

They make several observations:

• The deeper a class is in the hierarchy, the greater the number of methods it is likely

to inherit, making it more complex to predict its behavior.

• Deeper trees constitute greater design complexity, since more methods and classes

are involved.

• The deeper a particular class is in the hierarchy, the greater the potential reuse of

inherited methods.

c. Number of Children

Number of Children (NOC) is the number of immediate subclasses, which

also relates to scope.

To calculate NOC for class A one counts the number of classes which di-

rectly inherit from A.

They make several observations:

• The greater the number of children, the greater the reuse, since inheritance is a form

of reuse.

• The greater the number of children, the greater the likelihood of improper abstraction

of the parent class. If a class has a large number of children, it may be a case of

misuse of subclassing.

• The number of children gives an idea of the potential influence a class has on the

design. If a class has a large number of children, it may require more testing of the

methods in that class.

d. Coupling between Objects

Coupling Between Object Classes (CBO) relates to the interconnectedness

of otherwise-unrelated (through inheritance) classes.

62

To calculate CBO for classA one counts the number of classes, besideA or

ancestors of A, which are referenced either by instance variable or method call.

They make several observations:

• Excessive coupling between object classes is detrimental to modular design and pre-

vents reuse. The more independent a class is, the easier it is to reuse it in another

application.

• In order to improve modularity and promote encapsulation, inter-object class couples

should be kept to a minimum. The larger the number of couples, the higher the

sensitivity to changes in other parts of the design, and therefore, maintenance is more

difficult.

• A measure of coupling is useful to determine how complex the testing of various

parts of a design are likely to be. The higher the inter-object class coupling, the more

rigorous the testing needs to be.

The CBO metric has been the basis for many other coupling metrics. It is

sometimes criticized (Hitz & Montazeri, 1995; Kitchenham, 2010) yet remains in use and

validated by others (Basili et al., 1996; S. Chidamber et al., 1998).

e. Response for a Class

Response for a Class (RFC) is the number of methods that could possibly

be called in response to a message being received.

To calculate RFC for class A one counts the number of methods in A and

the number of methods that are called from within methods of A.

S. R. Chidamber and Kemerer and Li and Henry (1993a) do not specify

whether or not this includes or excludes methods called to outside classes, but Hitz and

Montazeri (1995) clarify RFC as the “union of the protocol a class offers to its clients and

the protocols it requests from other classes.”

S. R. Chidamber and Kemerer make several observations:

63

• If a large number of methods can be invoked in response to a message, the testing and

debugging of the class becomes more complicated since it requires a greater level of

understanding required on the part of the tester.

• The larger the number of methods that can be invoked from a class, the greater the

complexity of the class.

• A worst case value for possible responses will assist in appropriate allocation of

testing time.

f. Lack of Cohesion in Methods

Lack of Cohesion in Methods (LCOM) relates to the degree of similarity,

the difference among the instance variables used by each method in a class. This helps

identify classes that may be trying to do too many things and whose behavior will be less

predictable.

To calculate LCOM for classA, there are two similar but incompatible tech-

niques that people use:

• Count the number of method pairs in A that do not use any of the same instance

variables and subtract the number of method pairs inA that have at least one instance

variable in common. Negative values are often reported as zero (Basili et al., 1996).

• Calculate the percentage of method pairs that do not use any of the same instance

variables. This technique normalizes for the size of the class. Unfortunately the

empirical validations that have been performed do not use this technique (Section 2)

They make several observations:

• Cohesiveness of methods within a class is desirable, since it promotes encapsulation.

• Lack of cohesion implies classes should probably be split into two or more sub-

classes.

64

• Any measure of disparateness of methods helps identify flaws in the design of classes.

• Low cohesion increases complexity, thereby increasing the likelihood of errors dur-

ing the development process.

These CK metrics have been examined, criticized, praised, and embraced

by many researchers and practitioners, and are the metrics used in this research. However,

for completeness, what follows are some other interesting metrics and research that has

been done to improve the CK metrics. As so often happens with finer- and finer-grained

improvements, the community that accepts them shrinks as well, and the original stands

the test of time.

2. Empirical Evaluation of Metrics

Researchers have conducted studies to validate the CK metrics. These validations

provide insight into what values are considered expected for the metrics although no liter-

ature discovered provided a thorough review of all empirical studies in order to generate

consensus on these levels. The studies used metrics to predict fault-proneness as a sur-

rogate for estimating software quality. Some literature reminds practitioners to use the

metrics to guide further analysis when results are unexpected, and the same advice applies

to the acquisition professional assessing simulation frameworks.

The empirical studies discovered in the literature cautioned users that no metric

was a perfect predictor. However, these studies also confirmed that there was value in

evaluating software against these metrics. For studies with significant findings for given

metrics, a transition point from better to worse was calculated as one standard deviation

above the mean.

Li and Henry (1993b) evaluated five of the CK metrics (not CBO) and their own

metrics Message Passage Coupling (MPC) and Data Abstraction Coupling (DAC) to pre-

dict maintainability in a study of two commercial Ada applications built with Classic-

Ada.™ They calculated WMC using the McCabe cyclomatic complexity technique, unlike

the following studies which used the equal weighting method. Since the WMC metric dif-

65

fers in kind from the remaining studies, it is not reported here. Transition points for four

metrics were calculated from the statistical results: DIT > 2.7, NOC > 1.6, RFC > 75.6,

LCOM > 15.5.

Basili et al. (1996) evaluated eight information management systems against all

six CK metrics. They found that the correlations among the metrics were weak, and that

the relationship between CBO and RFC were most independent. They found that LCOM

values were near zero in their systems and so did not provide any meaningful differentiation

for their evaluation. Larger NOC values were better in their systems. Transition points for

four metrics were calculated from the statistics results: WMC > 28.3, DIT > 3.3, CBO >

14.4, RFC > 67.3.

S. Chidamber et al. (1998) evaluated three software systems of an unnamed Euro-

pean bank. They found correlation among WMC, RFC, and CBO and suggest that subsets

of the six CK metrics may be sufficient in assessing software. Transition points for six

metrics were calculated from the statistical results: WMC > 19.6, DIT > 1.5, NOC > 1.4,

CBO > 9.4, RFC > 37.6, and LCOM > 54.8.

Tang et al. (1999) evaluated a supervisory control and data acquisition system con-

sisting of over 200 subsystems and 3 million lines of C++ code. They measured the six

CK metrics and only validated WMC and RFC. Transition points for two metrics were

calculated from the statistical results: WMC > 19.6 and RFC > 100.2.

Cartwright and Shepperd (2000) evaluated a system from a large European telecom-

munications company. The company employed more than 2,000 developers, and the system

evaluated consisted of 133,000 lines of C++ source code. Of the CK metrics, they were

only able to calculate DIT and NOC and found that the maximum values encountered were

two and four respectively. Standard deviations were not reported. Because of the low val-

ues for these metrics, they only offered subjective evaluations but noted that the two CK

metrics that they used could point out problematic classes.

Olague et al. (2007) evaluated the open source Mozilla project Rhino, a 100% Java

implementation of JavaScript. Rhino is considered an example of agile software develop-

66

ment based on the principles of the Agile Alliance (Olague et al., 2007; Agile Alliance,

2011). They evaluated six releases of the source code from v1.4R3 to v1.5R5, which con-

sists of 148 classes and 36,000 lines of code. They used an alternate cohesion metric, so

their results are not comparable here. Transition points for five metrics were calculated

from the statistical results: WMC > 28.9, DIT > 1.4, NOC > 1.5, CBO > 6.4, and RFC

> 32.7.

These empirical studies can be summarized to form a loose understanding of transi-

tion points from better to worse values for metrics (Table 11). These values should be taken

with caution. Since our purpose for them is to provide insight into assessing software, not

to predict hard outcomes, they still are useful.

Table 11: Transition points identified in empirical validation studies in the literature.

Paper WMC DIT NOC CBO RFC

Li & Henry, 1993b - 2.7 1.6 - 75.6
Basili et al., 1996 28.3 3.3 - 14.4 67.3
S. Chidamber et al., 1998 19.6 1.5 1.4 9.4 37.6
Tang et al., 1999 19.6 - - - 100.2
Cartwright & Shepperd, 2000 - 2.0 4.0 - -
Olague et al., 2007 28.9 1.4 1.5 6.4 32.7
Boldface indicates chosen transition points.

There is some variation among the values observed in the validation experiments,

and this seems to be accepted in the literature. Therefore, it is only through our summariz-

ing the body of studies that transition points are identified.

3. Criteria for Metrics

There is no consensus in the literature for precise divisions in the metrics regarding

“good” and “bad” values. However, ranges can be inferred from normal to higher than

normal by examining the statistical results of several empirical studies and adding one

standard deviation to the mean. This is chosen as a conservative estimator. The one sided

67

Tchebysheff inequality (Equation 5) tells us that the mean plus one standard deviation

will always contain both the mean and median, regardless of the underlying distribution

(Equation 6). Since too little data is reported in the literature to provide a more aggressive

dividing line, µ plus k = 1 standard deviations is a reasonable choice. Three levels are

defined here for the six CK metrics. These levels are based on the low and high estimates

discovered in empirical studies.

Pr(X− µ > kσ) 6
1

1+ k2
(5)

|µ−m| 6 σ (6)

a. Weighted Method Complexity

When using equal complexity weights among methods (counting the meth-

ods in a class), the lowest published level that we infer as a transition is 19.6 (S. Chidamber

et al., 1998; Tang et al., 1999). The highest level is 28.9 (Olague et al., 2007). Therefore,

we divide the criteria into three categories: IWMC for WMC = [0,19.6), IIWMC for

WMC = [19.6,28.9), and IIIWMC for WMC = [28.9,∞).

b. Depth of Inheritance Tree

Empirical studies found that many projects had very low values of DIT.

The lowest published level that we infer as a transition is 1.4 (Olague et al., 2007), and the

highest level is 3.3 (Basili et al., 1996). We divide the metric into three categories: IDIT

for DIT = [0,1.4), IIDIT for DIT = [1.4,3.3), and IIIDIT for DIT = [3.3,∞).

c. Number of Children

Empirical studies suggested that a high number of children could indicate

unnecessary inheritance and thus induce inheritance coupling. The lowest published level

that we infer as a transition is 1.5 (S. Chidamber et al., 1998), and the highest level is 4.0

68

(Cartwright & Shepperd, 2000). We divide the metric into three categories: INOC for

NOC = [0,1.4), IINOC for NOC = [1.4,4.0), and IIINOC for NOC = [4.0,∞).

d. Coupling between Objects

Although there have been many follow-on metrics related to coupling, CBO

remains a meaningful metric. The lowest published level that we infer as a transition is

6.4 (Olague et al., 2007), and the highest level is 14.4 (Basili et al., 1996). We divide the

metric into three categories: ICBO for CBO = [0,6.4), IICBO for CBO = [6.4,14.4), and

IIICBO for CBO = [14.4,∞).

e. Response Set for a Class

Studies confirmed the effectiveness of the RFC metric. The lowest pub-

lished level that we infer as a transition is 32.7 (Olague et al., 2007), and the highest level

is 100.2 (Tang et al., 1999). We divide the metric into three categories: IRFC for RFC =

[0,32.7), IIRFC for RFC = [32.7,100.2), and IIIRFC for RFC = [100.2,∞).

f. Lack of Cohesion in Methods

There have also been many follow-on metrics to LCOM, but it stands as a

useful metric. Unfortunately the version of LCOM that is reported in the studies is not

the percentage method, which is normalized for class size, but rather the count of method

pairs that do not share a common instance variable minus the count of method pairs that

do. Because we do not have published LCOM values that we can apply, we strike LCOM

from our list.

g. Summary of Reuse Criteria

Criteria for these metrics vary in the literature, but they can be sifted and

summarized to provide some level of insight into the software being assessed. Table 12

summarizes the criteria used in this research to represent three quality levels.

69

Table 12: A thorough review of empirical validation studies provides transition points to
use as criteria with software metrics.

Lower Bounds
Metric I II III

Weighted Methods per Class (WMC) 0 19.6 28.9
Depth of Inheritance Tree (DIT) 0 1.4 3.3
Number of Children (NOC) 0 1.4 4.0
Coupling Between Object Classes (CBO) 0 6.4 14.4
Response for a Class (RFC) 0 32.7 100.2

4. Model for Assessing Reuse

To apply the model to the software frameworks, we calculate the metrics using a

software analysis tool and apply the criteria to populate the model.

For continuity with the openness model and to aid in understanding different por-

tions of the code, the criteria are applied to the two layers Middleware and Kernel. It should

be expected that External and Internal Applications are assessed, since they represent sim-

ulations built or tools included with the framework, not the framework itself. Clear lines

must be drawn with each framework regarding which code belongs in which layer.

The data may be presented such as in Table 13 where all of the ratings are presented

at once, and both a detailed inspection and a high-level glance can provide insight.

5. Weights for User Assigned Value Systems

If a final numeric score is desired, weights can be assigned to the categories accord-

ing to what layer and metric are most important. When summed, these weights provide for

a tailored assessment of the frameworks.

Let L be the set of layers L = {Middleware, Kernel} and l ∈ L be a layer. LetM be

the set of metrics {WMC, DIT, NOC, CBO, RFC} andm ∈M be a metric. Let Rlm be the

categorical rating assigned to a framework at the given layer and metric. Let wlm(Rlm)

70

Table 13: A model for presenting metrics for simulation frameworks help identify potential
risks to reusability.

Code Classes WMC DIT NOC CBO RFC

Delta3D x,xxx I . . .

Middleware . . . II
Kernel III

DMZ . . .

Middleware
Kernel

be the weighting function that returns the user assigned value for a given Rlm. Then the

overall openness value VR of a framework is given by Equation 7:

VR =
∑
l∈L

∑
m∈M

wlm(Rlm) (7)

The development of these weights for a particular use case is beyond the scope of

this dissertation, but they may be used to help score frameworks against the specific needs

of a program manager.

B. STUDY 2: ASSESSING REUSE

To demonstrate the feasibility of this assessment model, two simulation frameworks

Delta3D and DMZ (described in Sections 2 and 3) were analyzed with the reuse model. To

calculate the metrics, we used Understand from Scientific Toolworks, Inc. This software

has a Perl API for accessing the lexical database created by a software project. Through

this API one can write scripts to collect metrics that are not built-in to the software itself,

such as the scripts used to collect CK metrics here.

71

1. Methodology

The first step in the reuse study was loading the two frameworks into the analysis

tool Understand. This tool parsed all the source files in the two projects and created a

lexical database that could be queried later.

A number of shell, awk, and Perl scripts (Appendix A) were used to extract the nec-

essary metrics. Some metrics were generated by the reporting function within Understand

itself, and some required accessing the lexical database with the API through Perl.

The metrics were compiled in spreadsheets and keyed by class or filename, as ap-

propriate. From the spreadsheets, the data could be aggregated by framework, layer, or

other division. The ratings were assigned within the spreadsheet by formulas based on the

transition points developed from the literature.

2. Calculating the Metrics

The two codebases were analyzed to calculate CK metrics. The data was aggre-

gated by namespace for Delta3D and major directory for DMZ and then aggregated again

according to the software layers defined earlier: Middleware and Kernel. A detailed listing

of the results is given in Table 14 for Delta3D and Table 15 for DMZ. A summary at the

Middleware and Kernel levels is given in Table 16.

3. Applying the Criteria

We can now apply the criteria provided in the previous chapter to these metrics.

Each metric value is compared against the transition points to determine the rating. The

data was aggregated by namespace for Delta3D and major directory for DMZ and then

aggregated again according to the software layers defined earlier: Middleware and Kernel.

A detailed listing of the resulting ratings is given in Table 17 for Delta3D and Table 18

for DMZ. A summary is given in Table 19. Subscripts on the categories, e.g., WMC in

IWMC , are left off to improve readability in the densely-packed tables.

72

Table 14: Detailed listing of CK metrics for the Delta3D framework

Code Classes WMC DIT NOC CBO RFC

Delta3D 1,191 12.43 1.96 0.63 7.43 38.84

Middleware 822 11.51 1.86 0.49 7.32 39.64

dtABC 31 14.58 2.77 0.42 9.45 56.42
dtActors 98 9.72 4.39 0.30 7.68 102.63
dtAI 97 10.81 0.93 0.33 5.33 18.09
dtAnim 55 10.91 1.60 0.15 9.11 29.22
dtAudio 14 18.86 3.07 0.00 7.79 67.79
dtDirector 98 15.93 2.51 0.60 13.20 65.09
dtDIS 16 7.81 0.69 0.13 10.25 10.25
dtGUI 19 14.79 1.32 0.11 9.74 22.37
dtHLAGM 46 13.67 1.13 0.24 6.43 23.93
dtInputISense 1 11.00 4.00 0.00 7.00 59.00
dtInputPLIB 1 12.00 4.00 0.00 6.00 60.00
dtInspectorQt 21 16.71 1.95 0.86 9.14 22.10
dtLMS 13 7.31 1.00 0.00 4.15 18.85
dtNet 3 12.67 1.67 0.00 13.67 19.67
dtNetGM 11 16.82 2.27 0.18 11.91 42.55
dtQt 46 19.17 1.63 0.46 13.59 49.22
dtScript 1 11.00 3.00 0.00 4.00 32.00
dtTerrain 54 7.83 1.39 0.11 5.22 22.41
dtUtil 96 11.07 0.66 1.64 3.43 14.56
NA 57 3.82 1.56 0.32 2.07 29.93
psGeodeTransform 1 1.00 1.00 0.00 6.00 1.00
sigslot 43 6.00 1.30 0.65 2.51 9.95

Kernel 369 14.48 2.20 0.93 7.69 37.08

dtCore 155 20.70 2.15 1.01 8.80 45.49
dtDAL 111 8.95 2.61 1.03 7.30 30.14
dtGame 103 11.10 1.84 0.69 6.46 31.90

73

Table 15: Detailed listing of CK metrics for the DMZ framework

Code Classes WMC DIT NOC CBO RFC

DMZ 475 13.39 0.92 1.19 8.37 41.81

Middleware 319 13.52 1.17 0.77 10.24 52.82

frameworks/archive 11 15.91 1.18 0.82 10.82 53.73
frameworks/audio 11 15.18 0.82 0.27 10.00 42.64
frameworks/entity 28 12.96 1.89 0.04 11.39 138.00
frameworks/event 10 23.20 0.60 1.20 9.50 42.70
frameworks/input 18 16.56 1.00 2.11 10.06 43.11
frameworks/net 71 6.08 1.07 0.80 7.17 19.08
frameworks/object 27 20.04 1.26 2.96 10.00 73.67
frameworks/qt 80 15.88 1.24 0.30 11.45 52.75
frameworks/render 57 13.19 0.95 0.37 11.19 42.51
frameworks/weapon 6 14.00 1.67 0.00 18.33 122.67

Kernel 156 13.12 0.43 2.06 4.54 19.31

foundation/libs 26 11.73 0.42 0.38 3.19 16.85
foundation/plugins 10 9.40 1.00 0.00 7.90 31.40
kernel/runtime 70 11.29 0.53 4.06 6.51 17.69
kernel/system 19 15.21 0.37 1.32 1.47 23.05
kernel/types 31 18.32 0.06 0.10 2.03 18.84

Table 16: Summary listing of CK metrics for Delta3D and DMZ frameworks

Code Classes WMC DIT NOC CBO RFC

Delta3D 1,191 12.43 1.96 0.63 7.43 38.84

Middleware 822 11.51 1.86 0.49 7.32 39.64
Kernel 369 14.48 2.20 0.93 7.69 37.08

DMZ 475 13.39 0.92 1.19 8.37 41.81

Middleware 319 13.52 1.17 0.77 10.24 52.82
Kernel 156 13.12 0.43 2.06 4.54 19.31

74

Table 17: Detailed listing of reuse ratings for the Delta3D framework

Code Classes WMC DIT NOC CBO RFC

Delta3D 1,191 I II I II II

Middleware 822 I II I II II

dtABC 31 I II I II II
dtActors 98 I III I II III
dtAI 97 I I I I I
dtAnim 55 I II I II I
dtAudio 14 I II I II II
dtDirector 98 I II I II II
dtDIS 16 I I I II I
dtGUI 19 I I I II I
dtHLAGM 46 I I I II I
dtInputISense 1 I III I II II
dtInputPLIB 1 I III I I II
dtInspectorQt 21 I II I II I
dtLMS 13 I I I I I
dtNet 3 I II I II I
dtNetGM 11 I II I II II
dtQt 46 I II I II II
dtScript 1 I II I I I
dtTerrain 54 I I I I I
dtUtil 96 I I II I I
NA 57 I II I I I
psGeodeTransform 1 I I I I I
sigslot 43 I I I I I

Kernel 369 I II I II II

dtCore 155 II II I II II
dtDAL 111 I II I II I
dtGame 103 I II I II I

75

Table 18: Detailed listing of reuse ratings for the DMZ framework

Code Classes WMC DIT NOC CBO RFC

DMZ 475 I I I II II

Middleware 319 I I I II II

frameworks/archive 11 I I I II II
frameworks/audio 11 I I I II II
frameworks/entity 28 I II I II III
frameworks/event 10 II I I II II
frameworks/input 18 I I II II II
frameworks/net 71 I I I II I
frameworks/object 27 II I II II II
frameworks/qt 80 I I I II II
frameworks/render 57 I I I II II
frameworks/weapon 6 I II I III III

Kernel 156 I I II I I

foundation/libs 26 I I I I I
foundation/plugins 10 I I I II I
kernel/runtime 70 I I III II I
kernel/system 19 I I I I I
kernel/types 31 I I I I I

Table 19: Summary listing of reuse ratings for Delta3D and DMZ frameworks

Code Classes WMC DIT NOC CBO RFC

Delta3D 1,191 I II I II II

Middleware 822 I II I II II
Kernel 369 I II I II II

DMZ 475 I I I II II

Middleware 319 I I I II II
Kernel 156 I I II I I

76

4. Results

The results of the reuse ratings and the process of interpreting and studying the

results provides valuable insight into the software being assessed. This helps the acqui-

sition professional better understand the frameworks under consideration to make a more

informed decision.

To aid in the comparison between Delta3D and DMZ, we normalize the DMZ num-

ber of classes according to Delta3D’s size. To adjust for the fewer classes in DMZ (about

60% fewer), we solve for x in the relationship given by Equation 8 whereM is the number

of DMZ classes in a given subset, andNi is the number of classes in each framework with

i ∈ {DMZ,Delta3D}.

M

NDMZ

=
x

NDelta3D

(8)

For example, if we counted 24 classes in DMZ and 70 classes in Delta3D for some

grouping, then to find the adjusted DMZ value x that can be compared to 70, we take the

number of DMZ classes in the grouping M = 50, the total number of classes in Delta3D

NDelta3D = 1191, the total number of classes in DMZ NDMZ = 475, and compute x as

shown in Equation 9:

M

NDMZ

=
x

NDelta3D

x = NDelta3D

M

NDMZ

x = 1191
24

475

x = 60.2 (9)

We can then compare the adjusted DMZ value 60.2 to the Delta3D value 70. When

this adjustment is made, it will be noted in the table or figure that accompanies it.

77

Assigning notional weights to the weighting function allows for further analysis.

These weights would be customized according to the needs of the program manager. As-

sume a weight of 1 for I , 2 for II , and 3 for III (Equation 10).

wlm(Rlm) =


1, if Rlm = I

2, if Rlm = II

3, if Rlm = III

, ∀ l,m (10)

With a set of possible weights provided and focusing on the development opera-

tions, we can plot how the model differentiates between frameworks. Figure 10 shows the

results of plotting the weighted values as a stacked bar chart.

Overall Middleware Kernel

Comparison of Weighted Ratings for Reuse

Delta3D DMZ Delta3D DMZ Delta3D DMZ

WMC
—

DIT
—

NOC
—

CBO
—

RFC

Figure 10: The two frameworks differ with respect to reuse.

a. Weighted Methods per Class

Both frameworks are rated IWMC for WMC, which counts the number of

methods in each class, revealing that in general both frameworks have reasonably-sized

classes that are not too complex. Plotting the number of classes against their WMC values

on a logarithmic scale (Figure 11) reveals that DMZ has a slightly higher average WMC

than Delta3D. It is interesting to take a look at the top ten “hot spot” classes with respect to

78

WMC (Table 20). The first two classes dtCore::RefPtr and dtCore::ObserverPtr

inherit from Open Scene Graph classes and perhaps could be excused. Despite the fact that

DMZ has a higher average WMC, only two DMZ classes make it into the top ten (the next

one is ranked #18). This may be another result of the component approach to development

which values many, same-sized, composable components over “kitchen-sink” objects.

0!

20!

40!

60!

80!

100!

120!

140!

160!

180!

1! 10! 100! 1000!

N
um

be
r o

f C
la

ss
es
!

Weighted Methods per Class (WMC)!

Distribution of Classes by WMC!

Delta3D!

DMZ (adjusted)!

Figure 11: Number of classes per framework plotted by WMC reveals that DMZ has a
higher average WMC.

b. Depth of Inheritance Tree

Delta3D is rated IIDIT , and DMZ is rated IDIT for DIT. It is expected

that component based architectures are “flatter” with respect to inheritance (Qingqing &

Xinke, 2009), and the findings here are consistent with that observation. Lower DIT values

indicate that classes tend to be near the top of the inheritance chain and that inheritance is

not the primary means by which functionality is extended. Recall that lower DIT values

suggest lower dependencies on other classes and thus more loosely coupled code.

79

Table 20: The top ten classes with the highest WMC values reveals more potentially-
problematic classes in Delta3D.

Rank Class Framework Layer WMC

1 dtCore::RefPtr Delta3D Kernel 763
2 dtCore::ObserverPtr Delta3D Kernel 186
3 dtGame::GameManager Delta3D Kernel 135
4 dtGame::DeadReckoningHelper Delta3D Kernel 121
5 dmz::ObjectModuleBasic DMZ Middleware 114
6 dtUtil::DataStream Delta3D Middleware 102
7 dtHLAGM::HLAComponent Delta3D Middleware 87
8 dtUtil::KDTree Delta3D Middleware 84
9 dmz::ObjectModule DMZ Middleware 78

10 dtAnim::Cal3DModelWrapper Delta3D Middleware 77

Figure 12 reveals that Delta3D has a greater number of classes with high

DIT values than DMZ. Table 21 lists the top ten classes ranked by DIT values as well as

the highest-ranked DMZ class, which arrives after the top 380 classes with DIT values

[3..8]. Between the two frameworks there are 289 classes with DIT = 2.

c. Number of Children

Both frameworks are rated INOC for NOC indicating good levels of inher-

itance. Recall from Section 1 that some inheritance suggests good reuse but that greater

values of NOC may suggest improper abstraction of classes (S. R. Chidamber & Kemerer,

1994).

Plotting the number of classes against their NOC values on a logarithmic

scale (Figure 13) reveals that Delta3D and DMZ are fairly matched in NOC with 84.0%

of the Delta3D classes and 82.7% of the DMZ classes at NOC = 0. A look at the top

ten classes ranked by NOC (Table 22) reveals a spike in the dmz::plugin class with a

whopping 167 children—almost double the number two class. The high NOC count for

dmz::plugin reminds us that in a component architecture we expect to see all of the

components derive from the base component (plugin) class, not from other components

80

0!

50!

100!

150!

200!

250!

300!

350!

400!

450!

500!

0! 1! 2! 3! 4! 5! 6! 7! 8! 9!

N
um

be
r o

f C
la

ss
es
!

Depth of Inheritance Tree (DIT)!

Distribution of Classes by DIT!

Delta3D!

DMZ (adjusted)!

Figure 12: Number of classes per framework plotted by DIT reveals that Delta3D has a
greater number of classes with high DIT values.

Table 21: The top ten classes with the highest DIT values reveals more deep-inheritance
classes in Delta3D.

Rank Class Framework Layer DIT

1 dtActors::WaterGridActor Delta3D Middleware 8
2 dtActors::WeatherEnvironmentActor Delta3D Middleware 8
3 dtActors::TaskActorGameEvent Delta3D Middleware 8
4 dtActors::SkyDomeEnvironmentActor Delta3D Middleware 8
5 dtActors::TaskActorOrdered Delta3D Middleware 8
6 dtActors::TaskActorRollup Delta3D Middleware 8
7 dtAnim::Cal3DGameActor Delta3D Middleware 7
8 dtActors::DirectorActor Delta3D Middleware 7
9 dtActors::WaterGridActorProxy Delta3D Middleware 7

10 dtActors::DistanceSensorActor Delta3D Middleware 7
. . .
380 sigslot::signal8 Delta3D Middleware 3
381 dmz::RenderPluginEventOSG DMZ Middleware 2

81

that have been extended. This is the proper behavior for a component based architecture,

and the metrics confirm that DMZ matches this behavior.

0!

200!

400!

600!

800!

1000!

1200!

0.1! 1! 10! 100! 1000!

Nu
m

be
r o

f C
la

ss
es
!

Number of Children (NOC)!

Distribution of Classes by NOC!

Delta3D!

DMZ (adjusted)!

Figure 13: Number of classes per framework plotted by NOC reveals that Delta3D and
DMZ are fairly matched in NOC values.

d. Coupling between Objects

Both frameworks are rated IICBO for CBO. In Table 19 we observe that

Delta3D scores IICBO for both Kernel and Middleware, while DMZ scores different be-

tween Kernel and Middleware, ICBO and IICBO , respectively. This might not surprise us

since we know that the DMZ Kernel is fundamentally different than its Middleware. Recall

that a higher CBO value suggests greater complexity, greater interdependence, and greater

fragility when reusing code.

Plotting the number of classes against their CBO values on a logarithmic

scale (Figure 14) reveals that Delta3D has a greater number of low-CBO classes and that

CBO values are fairly evenly distributed across DMZ. However, it is interesting to take a

82

Table 22: The top ten classes with the highest NOC values reveals a close matching between
Delta3D and DMZ.

Rank Class Framework Layer NOC

1 dmz::Plugin DMZ Kernel 167
2 dtUtil::Enumeration Delta3D Middleware 86
3 dmz::ObjectObserverUtil DMZ Middleware 71
4 dmz::TimeSlice DMZ Kernel 60
5 dtUtil::Exception Delta3D Middleware 57
6 dmz::MessageObserver DMZ Kernel 37
7 dmz::InputObserverUtil DMZ Middleware 36
8 dtCore::Base Delta3D Kernel 34
9 dtCore::Transformable Delta3D Kernel 25

10 dtDirector::ActionNode Delta3D Middleware 23

look at the top ten classes ranked by CBO. Table 23 reveals that Delta3D also has some of

the highest-CBO values. The next DMZ class is ranked #16.

e. Response for a Class

Both frameworks are rated IIRFC for RFC, and again we observe that the

DMZ Kernel is rated slightly different at IRFC .

Plotting the number of classes against their RFC values on a logarithmic

scale (Figure 15) reveals that Delta3D has a number of very small, almost empty, classes

and that DMZ otherwise has lower RFC values. Table 24 lists the top eleven classes ranked

by RFC. The eleventh is added to the table because it is the first appearance of a DMZ

class. Recall that a higher RFC value suggests greater complexity, greater potential for

unintended consequences, and greater fragility when reusing code.

f. Top 100 Classes

Looking at the top 100 classes sorted in turn by each metric in both frame-

works shows that DMZ has a smaller presence in these potential hot spot classes than

Delta3D (Table 25 and Figure 16).

83

0!

50!

100!

150!

200!

250!

300!

1! 10! 100!

Nu
m

be
r o

f C
la

ss
es
!

Coupling Between Objects (CBO)!

Distribution of Classes by CBO!

Delta3D!

DMZ (adjusted)!

Figure 14: Number of classes per framework plotted by CBO reveals that Delta3D has a
greater number of low-CBO classes than DMZ.

Table 23: The top ten classes with the highest CBO values reveals that Delta3D has more
of the highest-CBO values than DMZ.

Rank Class Framework Layer CBO

1 dtHLAGM::HLAComponent Delta3D Middleware 69
2 dtGame::GameManager Delta3D Kernel 63
3 dtDAL::ActorPropertySerializer Delta3D Kernel 61
4 dtDAL::NamedGroupParameter Delta3D Kernel 49
5 dtDirector::DirectorEditor Delta3D Middleware 48
6 dmz::ObjectModuleBasic DMZ Middleware 46
7 dtDirector::DirectorEditor Delta3D Middleware 46
8 dtActors::WaterGridActor Delta3D Middleware 46
9 dtCore::StatsHandler Delta3D Kernel 45

10 dtGUI::GUI Delta3D Middleware 44

84

0!

10!

20!

30!

40!

50!

60!

70!

80!

90!

100!

1! 10! 100! 1000!

N
um

be
r o

f C
la

ss
es
!

Response for a Class (RFC)!

Distribution of Classes by RFC!

Delta3D!

DMZ (adjusted)!

Figure 15: Number of classes per framework plotted by RFC reveals Delta3D with some
small classes but otherwise beat by DMZ.

Table 24: The top eleven classes with the highest RFC values reveals that Delta3D has
some of the highest-RFC classes.

Rank Class Framework Layer RFC

1 dtCore::RefPtr Delta3D Kernel 852
2 dtActors::WeatherEnvironmentActor Delta3D Middleware 224
3 dtActors::WaterGridActor Delta3D Middleware 219
4 dtActors::TaskActorGameEvent Delta3D Middleware 217
5 dtActors::TaskActorOrdered Delta3D Middleware 210
6 dtActors::TaskActorRollup Delta3D Middleware 207
7 dtActors::TaskActor Delta3D Middleware 205
8 dtActors::SkyDomeEnvironmentActor Delta3D Middleware 204
9 dtActors::CoordinateConfigActor Delta3D Middleware 204

10 dtActors::DirectorActor Delta3D Middleware 203
11 dmz::ObjectModuleBasic DMZ Middleware 202

85

0%!

10%!

20%!

30%!

40%!

50%!

60%!

70%!

80%!

90%!

100%!

WMC! DIT! NOC! CBO! RFC!
CK Metric!

Breakout of Top 100 Classes by Metric!

Delta3D!
DMZ (adjusted)!

Figure 16: DMZ has fewer classes in the top 100 (except RFC), sorted descending by
metric, than Delta3D, even adjusting for DMZ being 60% smaller than Delta3D.

Table 25: DMZ has fewer classes in the top 100 (except RFC), sorted descending by metric,
than Delta3D, even adjusting for DMZ being 60% smaller than Delta3D.

Framework WMC DIT NOC CBO RFC

Delta3D 55.8 100.0 57.2 61.5 44.7
DMZ 44.2 0.0 42.8 38.5 55.3

86

C. SUMMARY

We have successfully shown that our reuse model differentiates between two visual

simulation frameworks and that we gain valuable insight in the process of applying and

interpreting the model. The model contributes a new approach and tool for program man-

agers and others to assess the nature of visual simulation frameworks with respect to the

potential for reuse.

The model does not present as dramatic a difference between the frameworks as

was expected. The proponents of component architecture tout the focus on decoupling, but

the model seemed to focus more on the reusability of the underlying objects on which the

components were built than the components themselves. For that, new metrics of agility

are developed in Chapter V.

87

THIS PAGE INTENTIONALLY LEFT BLANK

88

V. AGILITY

In this chapter we develop and apply a model for assessing agility based on the

definition and need established in Chapter II: Literature Review. The model uses new

metrics that were created out of necessity for lack of any established metrics. We conduct

a study in which we show that the model differentiates between two visual simulation

frameworks and dramatically illustrates the differences in the two architectures.

A. DEVELOPING THE AGILITY MODEL

We learned that “‘agility is a very seductive word” and that there are many “personal

definitions” of it (Dove, 1994), but we require a model that is more precise. Measuring

agility as we define it, by code being easily reconfigured, repurposed, or integrated, is not as

straightforward as the static analysis we used for openness or reuse. We have defined agility

in terms of actions—reconfigure, repurpose, integrate—and so agility must be measured “in

flight” as actions take place.

1. Measuring Agility

Agility is sometimes linked to component based programming, and there has been

some effort in developing complexity and other metrics specifically for components (Sharma

& Kumar, 2007; Ismail, Wan-Kadir, Saman, & Mohd-Hashim, 2008; Qingqing & Xinke,

2009). These metrics try to do for components what CK metrics do for objects and classes,

but they do not address our specific question of agility.

We could find no literature offering metrics for measuring software agility, but

Lanman and Proctor (2009) remind us of the value of swapping out components in a sys-

tem. Therefore, swapping out functionality in software is where we will turn. This action

touches on reconfiguring, repurposing, and integration.

Being able to swap out components is a useful thing. It is easy for developers to

think that once a piece of code is working, they will never go back to it, although this could

89

be due to nothing more than burn out from working with the same code for a long time.

Whatever the reason code inevitably needs to be replaced or upgraded, because require-

ments inevitably change. Developers should be planning on change as the only constant,

and something that improves the change process is worth considering.

It is not feasible to measure directly the effort required to swap out a portion of a

simulation framework. Effort could be measured in time or money. It would be wasteful

of both to go through the whole process of swapping out code just to see how hard it was.

Instead we require metrics that will estimate the effort that would be required to execute

the swap.

a. Included Files

We can estimate the effort of swapping out a piece of code by counting the

connections to those files that are being replaced. Many programming languages have an

include or import statement that makes available the functionality of an external piece

of code. The more code we have that connects to this swapped out code, the greater the

effort required to complete the swap. We therefore propose four metrics that measure the

extent to which files are included that will need to be removed as part of the swapping

process (Table 26).

Functionality F is being swapped out. L is the set of all lines of code in the

project. C is the set of all classes in the project. IF is the set of all include statements

for functionality F. LIF is the set of all lines of code that include functionality F. CIF is

the set of all classes that include functionality F. |X| is the cardinality of set X.

Table 26: Agility metrics related to the files that are included.

Metric Formulation

Lines that Include F (LI) LI = |LIF |

Percent of Lines that Include F (PLI) PLI = |LIF |÷ |L|

Classes that Include F (CI) CI = |CIF |

Percent of Classes that Include F (PCI) PCI = |CIF |÷ |C|

90

It is possible that some files may have #include statements but do not

actually use functionality F in the file. While such files should be easier to fix than others,

they still must be inspected and altered for the removal of functionality F to be complete,

and so the metrics retain their usefulness even in this situation.

b. References

Counting the #include statements is a good start and provides a good,

coarse metric for estimating the effort required for swapping out functionality, but there

are at least two issues that it leaves unaddressed: the case of unnecessary, “left over”

#include statements abandoned in the code and the amount of code within each file that

actually uses the functionality. To address these, additional metrics that count the actual

references to elements, e.g., functions or variables, from functionality F are added (Table

27).

RF is the set of all operations that use functionality F. LRF
is the set of all

lines of code that use one ore more operations in RF. CRF
is the set of all classes that use

one ore more operations in RF.

Table 27: Agility metrics related to references made.

Metric Formulation

Lines with References to F (LR) LR = |LRF
|

Percent of Lines with References to F (PLR) PLR = |LRF
|÷ |L|

Classes with References to F (CR) CR = |CRF
|

Percent of Classes with References to F (PCR) PCR = |CRF
|÷ |C|

2. Model for Assessing Agility

To assess agility we select a functionality and estimate the effort to swap it out. The

eight agility metrics are calculated, but the actual process of swapping out the functionality

is not completed as that would entail unnecessary cost.

91

Unlike the openness and reuse models we have no information on which to create

criteria against which to measure these metrics objectively. Instead multiple frameworks

can be compared by comparing the metrics (Table 28).

Table 28: Agility metrics can be compared side by side.

Framework

Metric Framework 1 Framework 2

Lines of Code, |L| xx,xxx xx,xxx
Number of Classes, |C|

Lines with Includes, LI
Percent of Lines with Includes, PLI

Classes with Includes, CI
Percent of Classes with Includes, PCI

Lines with References, LR
Percent of Lines with References, PLR

Classes with References, CR
Percent of Classes with References, PCR

B. STUDY 3: ASSESSING AGILITY

To demonstrate the feasibility of this assessment model, two simulation frameworks

Delta3D and DMZ (described in Sections 2 and 3) are analyzed with the agility model by

estimating the effort required to swap out the rendering engines. The rendering engine is

perhaps the most complex portion of a visual simulation framework, so performing well

in this test is a significant challenge. This is a worst case scenario. In both frameworks,

the rendering engine is OSG. This helps provide a clean environment for verifying the

usefulness of the model.

1. Methodology

To calculate the metrics in Tables 26 and 27, scripts (Appendix B) were run against

the source code in each framework.

92

After the counting metrics are calculated, the percentages are calculated based on

the number of lines of code or number of classes, as appropriate, and as given by the tool

Understand used earlier in this research.

The data was then compiled in spreadsheets to be aggregated by framework, layer,

or other division. Calculations, charts, and analysis was conducted from within these

spreadsheets.

2. Results

The experiment is quick to execute, although the effort represented by the metrics

is still considerable. A more thorough experiment, though of questionable additional value,

would be to fund the teams of developers to implement this change and record the time and

money that was required. Table 29 shows the results of the calculations.

Table 29: The agility model suggests almost an order of magnitude improvement of DMZ
over Delta3D.

Framework

Metric Delta3D DMZ

Lines of Code, |L| 160,705 98,336
Number of Classes, |C| 1,191 475

Lines with Includes, LI 935 158
Percent of Lines with Includes, PLI 0.6 0.2

Classes with Includes, CI 310 31
Percent of Classes with Includes, PCI 26.0 6.5

Lines with References, LR 4,687 680
Percent of Lines with References, PLR 2.9 0.7

Classes with References, CR 259 31
Percent of Classes with References, PCR 21.7 6.5

a. Dramatic Differences

The results are also presented graphically in Figure 17. A striking differen-

tiation can be seen in all four charts. The upper left chart, for example, reads, “Regard-

93

ing includes, Delta3D had 935 OSG includes, and DMZ had 158. Regarding references,

Delta3D had 4,687 references, and DMZ had 680.” This is almost an order of magnitude

difference. It represents actual time programmers would need to spend pulling out Open

Scene Graph and putting in something else. Removing size from the equation, the lower

right chart is also compelling. It reads, “Regarding includes, 26.0% of Delta3D classes had

OSG includes, and 6% of DMZ classes had OSG includes. Regarding references, 22% of

Delta3D classes had OSG references, and 6% of DMZ classes had OSG references.” This

is a significant difference.

0

1250

2500

3750

5000

Includes References

Delta3D DMZ

0

100

200

300

400

Includes References

Lines Classes

0

7.5

15

22.5

30

Includes References
0

0.75

1.5

2.25

3

Includes References

Count

Percent

lower is more agile

Figure 17: Whether by lines of code, by class, by raw count, or by percentage, the compo-
nent based DMZ reveals itself to be more agile than Delta3D.

Yet another way to look at the results is with a Kiviat diagram (Figure 18),

normalized with the Delta3D scores around the perimeter. This again shows a dramatic

difference between the two frameworks when measuring agility.

94

0"

0.25"

0.5"

0.75"

1"
Lines"with"#includes"(LI)"

Percent"Lines"with"#includes"
(PLI)"

Classes"with"#includes"(CI)"

Percent"Classes"with"#includes"
(PCI)"

Lines"with"OSG"References"(LR)"

Percent"Lines"with"OSG"
References"(PLR)"

Classes"with"OSG"References"
(CR)"

Percent"Classes"with"OSG"
References"(PCR)"

Delta3D"

DMZ"

Figure 18: The estimated effort to swap out the rendering engine of DMZ (inner polygon,
as a percent of Delta3D) is considerably less than Delta3D.

b. Includes vs. References

We might expect to see some correlation between some of the “files in-

cluded” and “references” metrics, and that seems to be borne out. For example, DMZ has

31 classes that have OSG include statements and 31 classes that make OSG references,

but breaking out the metrics this way also reveals some inconsistencies in Delta3D. There

are 310 classes that have OSG include statements but only 259 classes with OSG ref-

erences. This suggests “left over” code in Delta3D that could be cleaned up. A future

study with more frameworks might determine if the include and reference metrics could be

consolidated.

95

c. Absolutes vs. Percents

The metrics which provide absolute counts and the metrics with percentages

offer different insight and should both be retained. The absolute counts, e.g., LR and CR,

are a doorway to estimating the time and money that would be required to make the changes

represented in the study. The percentages provide a convenient, normalized metric that is

more appropriate for assessing the quality of the code independent of its size.

C. SUMMARY

We have successfully shown that our agility model differentiates between two vi-

sual simulation frameworks and that we gain valuable insight in the process of applying

and interpreting the model. The model contributes a new approach and tool for program

managers and others to assess the nature of visual simulation frameworks with respect to

openness.

96

VI. CONCLUSION

A. REVIEW

Although there is much guidance in the literature and in government documents for

acquisition professionals regarding openness, reuse, and agility, there are no quantitative

models that a PM could use to compare visual simulation architectures. This research

contributed three models that provide quantitative differentiation for openness, reuse, and

agility.

For each objective, a different amount of help was available from the literature

(Table 30). With openness, the literature had taxonomies and terms, but this research de-

veloped the metrics and rolled them into a useful model. With reuse, the literature had

definitions and even metrics, but this research brought the metrics together into a coherent

model. With agility, the literature provided very little foundation, except to establish that

people wanted “agility.” This research provided a working definition, developed the met-

rics, and made some sense of the metrics all from scratch. For each objective this research

included a study to demonstrate feasibility, and those were successful.

Table 30: For each objective, there was a different amount of help available from the liter-
ature.

Openness Reuse Agility

Define terms Lit. Lit. •
Develop metrics • Lit. •
Build quantitative model • • •
Perform feasibility study • • •

97

B. DISCUSSION

1. Choice of Models

Prior to this research, there were few methodologies available to quantitatively iden-

tify the advantages of one architecture over another. The comparisons of one architecture

to another seemed to hinge more on “brochure-ware” than scientific analysis. There did

not seem to be a rigorous testing method for assessing attributes of simulation software

that people supposed were important.

Openness and reuse were identified as candidate attributes. There is a lot of de-

mand in the government for these qualities. However, these qualities have not been rig-

orously defined. There was much literature addressing various meanings of openness and

various attributes related to reuse. There were definitions for the terms and some attempts

at quantifying them, but there was nothing available to assess visual simulation software

architectures.

The openness model developed in this research differentiated between the two

frameworks studied. Both frameworks had similar open source licenses. Therefore, the

strongest differentiation was made regarding standards and innovation. The model revealed

significant differences in the consistency across the layers and the development operations.

These differences would not be revealed by a licensing-only approach to openness.

The reuse model was the most surprising. Component based architectures stress

decoupling. This suggested that the CK metrics that relate to coupling would reveal this

strength of components over objects. This was not so. The component architecture was not

a clear winner. Although the two frameworks were significantly different in their architec-

ture, the reuse model showed only marginal differences.

It is the composability of component architectures that is attractive. Although both

objects and components are meant to be reusable and both encourage programming to clear

interfaces, components go a step further and abstract even the communication mechanisms.

Components try to reduce coupling not by eliminating coupling itself but by changing

the kind of coupling that happens. Objects can be though of as puzzle pieces—clearly

98

defined, well-documented, interchangeable even—but puzzle pieces nonetheless. Consider

components to be Tinkertoys with a variety of shapes but very few ways to connect them

(Figure 19).

Component BasedObject Oriented

Figure 19: Objects can be likened to puzzle pieces that fit neatly together, and components
can be likened to Tinkertoys with their various shapes connected by simple means.

This realization moved the research in a new direction toward agility. Measuring

agility required measurements to be taken “in motion” rather than through static code anal-

ysis. This produced the methodology of swapping out a portion of a framework’s function-

ality and estimating the effort of this action. The difference between the two frameworks

studied was significant.

2. Additional Agility Metric

Some alternate analysis for assessing agility was introduced too late in the research

for in depth study, but a brief summary is presented here. The central question revolves

around how much variation is seen in the OSG references that are made within the frame-

works. The idea is that a developer would have an easier time swapping out OSG from a

class that had 100 references to the same OSG class, than a class with 1 reference each to

100 different OSG classes.

To investigate whether or not this could differentiate the two frameworks, the agility

study was augmented to include a new metric, Response Entropy for a Class (REC). This

metric is similar to the RFC CK metric, in that it represents a kind of “damage control”

estimate. It is also similar in measurement technique to CBO. To calculate REC, for each

99

class in the framework that makes references to the functionality being swapped out, count

the number of different classes from that functionality that are referenced. For example, if

the OSG class osg::Vec3 was referenced 20 times within a class, and that was the only

class referenced from OSG, then REC for that class would be 1. The REC values were

calculated for Delta3D and DMZ and aggregated by layer.

Table 31 shows the REC values for the classes that had OSG references. For com-

parison, the CBO values are also presented both for the classes that had OSG references as

well as for all the classes in the framework. Also of interest is the observation that the CBO

average values for the classes with OSG references was much lower than the averages for

the entire frameworks.

Table 31: Agility REC values compared to CBO values for Delta3D and DMZ

CBO

Code Classes REC These Classes All Classes

Delta3D 259 8.2 15.3 7.43

Middleware 167 6.0 15.5 7.32
Kernel 92 12.3 15.1 7.69

DMZ 31 10.8 17.6 8.37

Middleware 31 10.8 17.6 10.24
Kernel - - - 4.54

The REC appears to provide differentiation. It also provides an interesting way to

reason about the effort required for swapping out parts. As such this metric deserves further

exploration in future work.

The correlation between REC and CBO (Figure 20) is expected. Although REC is

related to RFC for intent, it is also related to CBO in actual measurement. An increase in

the REC necessarily implies an increase in CBO.

100

0!

10!

20!

30!

40!

50!

60!

70!

80!

1" 10" 100" 1000"

Co
up

lin
g

Be
tw

ee
n

O
bj

ec
ts

 (C
BO

)!

Response Entropy for a Class (REC)

Delta3D!
DMZ!

Figure 20: As expected, REC correlates to CBO

3. Uniformity of Design

An unexpected discovery during the openness study (Section B) was that the com-

ponent framework DMZ had more consistent ratings across software layers and develop-

ment operations than the conventional object based Delta3D. Recall that with regard to

standards Delta3D scored Is , IIs , and IIIs for integrating, extending, and modifying

the middleware, while DMZ scored a consistent Is for all three because all interactions

with DMZ revolve around configuring its plugins and manipulating data in its Object Mod-

ule.

The value of this consistency is hard to determine. Because the integrate operation

is the primary means by which a programmer uses a framework, this consistency may

not be important to some developers. However, that view might be short-sighted. Today

a framework may do just what the programmer needs it to do, but tomorrow it may fall

short. An architecture with a consistent means for performing all development operations

may help protect against the lock-in often seen today. Simply being able to perform all

development operations is a win, but consistency therein is even better.

101

Consider the case of Virtual Battlespace 2 (VBS2), the “video game” from Bohemia

Interactive developed for the military. VBS2 has an Application Scripting Interface (ASI)

that allows developers to add features and behaviors. Evertsz and Ritter (2009) combine the

cognitive architecture CoJACK with VBS2 to create suicide bomber scenario where fear

and morale are modeled in the virtual actors. They remark that they are limited by what data

and functionality is available in the scripting language. Not all elements of the simulation

are accessible. Bohemia Interactive released VBS2Fusion which is advertised as protecting

developers from having to learn their scripting language by letting them use C++ instead.

It has expanded support for accessing data within the simulation (SimCentric, 2011). The

impact of this new product, purchased separately from VBS2, has yet to be determined, but

military customers are clearly held over a barrel as they try to integrate, extend, and modify

their simulations.

The advantage of a uniform design may go deeper still. Extended applications (third

party simulations) built with DMZ are subject to the same uniformity as the middleware.

This means that, barring poor licensing negotiations with vendors, simulations built with

an architecture like DMZ allow the government not only greater latitude in expanding the

power of the framework but also greater ability to pick out and repurpose components from

third party simulations. This may take us one step closer to avoiding the dreaded, “But we

already paid for that!” complaint.

4. Helping the Three Program Managers

Chapter I introduced three PMs with three different needs for visual simulation as

examples of stakeholders who could benefit from this research. One PM had a project with

a horizon of 15 years or more. Another expected many other projects to fork off from the

original. The third needed a quick and dirty simulation to answer a narrow and specific

question. These three PMs might not weight the metrics the same and might eliminate

certain elements of the model.

102

These three PMs were given weights for the openness and reuse models based on

the things that were important to them. The models differentiated between the two frame-

works, but with the weights applied, the model was able to present results from each PM’s

perspective.

Figure 21 shows that because of the way openness matters to the first two PMs,

DMZ scores higher than Delta3D. For the PM who has an exercise coming up and just

wants a quick analysis, openness is not as important, and the differences between the frame-

works are marginalized.

With reuse the two frameworks were much more similar. Two things can be ob-

served in the chart on the right. One is that two of the PMs care more about reuse than the

third. This is similar to openness. Also the differences between the two frameworks are not

great, since the difference in the ratings were not so dramatic with reuse.

0

25

50

75

100

125

Major
Combat
System

Game
Based
Trainer

UAV
Exercise

Framework Scores Based on Openness

Delta3D
DMZ

0

10

20

30

40

50

Major
Combat
System

Game
Based
Trainer

UAV
Exercise

Framework Scores Based on Reuse

Higher is better

Figure 21: Different priorities among program managers may cause them to value open-
ness, reuse, and agility—and hence different architectures—differently.

Agility is the least mature model, for obvious reasons. It has the least support

from literature. The Kiviat diagram in Figure 18 is a compelling visual for PMs who are

concerned about agility.

103

C. CONCLUSIONS

Openness, reuse, and agility are indeed important attributes of visual simulation

frameworks, and they can be used to assess simulation frameworks and their underlying

architectures. The three models developed in this research were successful at differen-

tiating the two visual simulation frameworks studied and provided insight that could help

acquisition professionals make decisions regarding their choice of simulation architectures.

In the literature we see that openness, reuse, and agility are important and that

there are no suitable models for assessing visual simulation with respect to these qualities.

Breaking openness into standards, licensing, and innovation on one axis (Maxwell, 2006)

and software layers and development operations on two more axes (Anvaari & Jansen,

2010), provides a powerful space in which to characterize visual simulation, and possibly

other, software. The venerable CK metrics (S. Chidamber & Kemerer, 1991) are well-

tested and have many years of use to their credit. There is little to help build an agility

model.

The three-axis openness model was a more powerful differentiator than was ex-

pected. It distinguished between two open source frameworks in the areas of open standards

and open innovation. It revealed interesting features about one component based architec-

ture regarding its uniformity of design (Section 3) that may help reduce the painful effects

of legacy code in the future. Weighting the ratings allows for customizing an analysis of

frameworks based on the particular needs of the project at hand.

The reuse model was the weakest differentiator of the three but did succeed in high-

lighting potential hot spots in the frameworks. In one case examining average metric values

made one framework more appealing while examining the worst ranking classes made the

other framework more appealing (Section a). The metrics related to coupling did not offer a

convincing case for the advantages of components of objects, as was supposed. This effect

encouraged the development of a third model based on agility (Section 1). Weighting the

ratings allows for customizing an analysis of frameworks based on the particular needs of

the project at hand.

104

The agility model was built without the aid of supporting literature but still revealed

the most dramatic differences between the two frameworks studied. The estimated differ-

ence in effort between the two frameworks was almost an order of magnitude. Some of the

advantages that proponents of component architectures like to promote regarding compos-

ability and flexibility were borne out in this study (Section 2).

D. FUTURE WORK

As successful as the three models of openness, reuse, and agility are, there are other

models for these same important areas that could be developed and compared to the three

in this dissertation. This is the first attempt to provide quantitative models for assessing

visual simulation frameworks, and there may be room for improvement.

The metrics in the reuse model could be replaced with other software metrics linked

to reusability. The CK metrics were selected because they have stood for a long time, are

respected, and have been validated in the literature, but there are dozens of other metrics

(Xenos et al., 2000; Kitchenham, 2010), largely untested except for the papers wherein

they were introduced, and some of them may have some advantages. Metrics that may

differentiate the models better along reuse should replace the metrics used here.

The strong differences in agility between the two frameworks suggest that there is

potential to explore this further and develop more advanced and detailed models that break

up agility into finer grains as we have done with the openness model. The characteristics

that Qumer and Henderson-Sellers (2006b) uses—flexibility, speed, leanness, learning, and

responsiveness—in measuring agility in companies may provide an alternative path for

defining agility in software as well.

Other areas besides openness, reuse, and agility could be pursued. Maintainability

and security are two very different characteristics at which people nod their head saying

yes, they want more of it, and these are but two of the many desirable qualities of software

that could benefit from clear definitions and assessment tools.

105

The final goal of this dissertation and related future work is to provide PMs with

quantitative tools that they can use to aid in their decision making about visual simulation

development. Rigorous models that lead to better architectures will help the DoD build or

buy better software.

106

A. APPENDIX

A. SCRIPTS FOR CALCULATING REUSE METRICS

1. Parent Script

The following script fires off all the required scripts for generating metrics.
! / b i n / sh
RunAl l . sh

i f [$# − l t 1] ; t h e n
echo ”USAGE: $ (basename $0) u n d e r s t a n d−d a t a b a s e . udb ”
echo ”Be s u r e a l s o t h a t you have g e n e r a t e d r e p o r t s i n U n d e r s t a n d : ”
echo ” R e p o r t s menu −> G e n e r a t e R e p o r t s ”
echo ” P r o b a b l y b e s t t o run from t h e d i r e c t o r y wi th t h e . udb f i l e . ”
e x i t

f i

UDB=” $1 ”
UDBDIR=$ (d i rname ”$UDB”)
UDBBASE=$ (basename −s . udb ”$UDB”)

Conver t t h e Unders tand R e p o r t s f i l e t o s e v e r a l CSV f i l e s
i f [−f ” ${UDBDIR} / ${UDBBASE} . t x t ”] ; then

˜ / m e t r i c s / s c r i p t s / Conver t−Unders tand−Repor t−To−CSV . sh ” ${UDBDIR} / ${UDBBASE} . t x t ”
echo

e l s e
echo ” $ (t p u t s e t a f 1) Mis s ing r e p o r t f i l e . $ (t p u t s g r 0) ”
echo ” You need t o g e n e r a t e r e p o r t s i n U n d e r s t a n d : ”
echo ” R e p o r t s menu −> G e n e r a t e R e p o r t s ”
echo ” The f i l e s h o u l d be named $ (t p u t s e t a f 2) ${UDBDIR} / ${UDBBASE} . t x t $ (t p u t s g r 0) ”
e x i t 1

f i

Runs some cus tom m e t r i c s u s i n g t h e Unders tand P e r l API
˜ / m e t r i c s / s c r i p t s / R u n A l l P e r l . sh ”$UDB”

Merge t h e CSV f i l e s t h a t are keyed o f f o f c l a s s n a m e s
echo ” Merging csv f i l e s t o $ (t p u t s e t a f 3) ${UDBDIR} / ${UDBBASE}−M e r g e d C l a s s M e t r i c s . csv$ (t p u t s g r 0) ”
˜ / m e t r i c s / s c r i p t s / MergeCsv . sh \

${UDBDIR} / ${UDBBASE}−C l a s s { OO ,} M e t r i c s R e p o r t . c sv \
${UDBDIR} / ${UDBBASE}−{ c j c l a s s m e t r i c s , c o u p l i n g , c c l a s s f i l e n a m e s , c h a l s t e a d } . c sv \
> ${UDBDIR} / ${UDBBASE}−M e r g e d C l a s s M e t r i c s . c sv

#${UDBBASE}−{ c c l a s s f i l e n a m e s , c j c l a s s m e t r i c s , c o u p l i n g } . c s v \

107

2. Converting Reports

The following script was used to convert the project reports generated by Under-

stand. Some necessary metrics could be extracted from the reports with some process-

ing.
! / b i n / sh
Conver t−Unders tand−Repor t−To−CSV . sh

i f [$# − l t 1] ; t h e n
echo ”USAGE: $ (basename $0) u n d e r s t a n d−m e t r i c s−f i l e ”
e x i t

f i

From Unders tand , R e p o r t s −> Genera te Repor t s , c r e a t e s a f i l e
w i t h (p a r t o f i t) l o o k i n g l i k e what you s e e below . Run t h i s
c o n v e r t e r t o make t h e C l a s s M e t r i c s Re por t s e c t i o n t a b u l a r .
#
C l a s s M e t r i c s Re po r t
#===
A c c e l e r a t i o n :
L i n e s 36
L i n e s Blank 5
L i n e s Code 31
L i n e s Comment 0
Average L i n e s 7
Average L i n e s Comment 0
Average C o m p l e x i t y 1
Maximum C o m p l e x i t y 1
R a t i o Comment / Code 0 . 0 0
#

f u n c t i o n c o n v e r t (){
SECTIONTOSUMMARIZE=” $1 ”
INPUTFILE=” $2 ”
INPUTDIR=$ (d i rname ”$INPUTFILE”)
INPUTBASE=$ (basename −s . t x t ”$INPUTFILE”)
THISSCRIPT=” $0 ”
THISSCRIPTDIR=$ (d i rname ”$THISSCRIPT”)
AWK=awk

i f [$# == 3] ; t h e n
i f [” $3 ” = ”−”] ; then

To S t a nd a r d Out
$AWK −f ” ${THISSCRIPTDIR } / Unders tand−Repor t−to−CSV . awk” \

Sect ionToSummar ize =”$SECTIONTOSUMMARIZE” ”$INPUTFILE”
e l s e

To Named F i l e
OUTPUTFILE=$2
$AWK −f ” ${THISSCRIPTDIR } / Unders tand−Repor t−to−CSV . awk” \

Sect ionToSummar ize =”$SECTIONTOSUMMARIZE” ”$INPUTFILE” > ”$OUTPUTFILE”
echo ” Outpu t $ (($ (wc −l $OUTPUTFILE | awk ’{ p r i n t $1 } ’) − 1)) r e c o r d s t o $OUTPUTFILE”

f i
e l s e

Genera te a d e f a u l t f i l e name
OUTPUTFILE=${INPUTDIR} / ${INPUTBASE}−$ (echo $SECTIONTOSUMMARIZE | t r ’ ’ ’ ’) . c sv
$AWK −f ” $ (d i rname ” $0 ”) / Unders tand−Repor t−to−CSV . awk” \

Sect ionToSummar ize =”$SECTIONTOSUMMARIZE” ”$INPUTFILE” > ”$OUTPUTFILE”
echo ” Outpu t $ (($ (wc −l $OUTPUTFILE | awk ’{ p r i n t $1 } ’) − 1)) r e c o r d s t o

$ (t p u t s e t a f 2) $OUTPUTFILE$ (t p u t s g r 0) ”
f i

108

}

Do c o n v e r s i o n s
echo ” C o n v e r t i n g U n d e r s t a n d r e p o r t s t o i n d i v i d u a l csv f i l e s . . . ”
c o n v e r t ” C l a s s M e t r i c s Re po r t ” ” $1 ”
c o n v e r t ” C l a s s OO M e t r i c s Re po r t ” ” $1 ”
c o n v e r t ” Program Uni t Complex i ty Re po r t ” $1
c o n v e r t ” F i l e Average M e t r i c s ” ” $1 ”
c o n v e r t ” F i l e M e t r i c s ” ” $1 ”
c o n v e r t ” Program Uni t Complex i ty ” ” $1 ”

3. Running Perl Scripts

The software Understand has a Perl API for advanced analysis. Here are the files

used.
! / b i n / sh
R u n A l l P e r l . sh

i f [$# != 1] ; t h e n
echo ”USAGE: $ (basename $0) u n d e r s t a n d−d a t a b a s e . udb ”
echo ” C r e a t e s a number o f m e t r i c s f i l e s based on t h e U n d e r s t a n d D a t a b a s e ”
e x i t

f i

UDB=” $1 ”
THISSCRIPT=” $0 ”
UDBBASE=$ (basename −s . udb ”$UDB”)
UDBDIR=$ (d i rname ”$UDB”)
THISSCRIPTDIR=$ (d i rname ”$THISSCRIPT”)

PROC=1
echo ” D e t e c t i n g number o f p r o c e s s o r s . . . ” ‘ s y s c t l −n hw . ncpu ‘ && PROC= ‘ s y s c t l −n hw . ncpu ‘
/ b i n / l s ${THISSCRIPTDIR} /{ c j c l a s s m e t r i c s , c o u p l i n g , c c l a s s f i l e n a m e s , c h a l s t e a d } . p l | \
x a r g s −n 1 −P ”$PROC” ” ${THISSCRIPTDIR } / RunOnePerl . sh ” ”$UDB”

e x i t

E x e c u t e a l l t h e P e r l s c r i p t s i n ” s c r i p t s ” f o l d e r as Unders tand P e r l modules
f o r s c r i p t i n ${THISSCRIPTDIR } /{ c j c l a s s m e t r i c s , c o u p l i n g , c c l a s s f i l e n a m e s , c h a l s t e a d } . p l ; do
s c r i p t B a s e=$ (basename −s . p l ” $ s c r i p t ”)
CSVFILE=”${UDBDIR} / ${UDBBASE}−${ s c r i p t B a s e } . c s v ”
echo ” P r o c e s s i n g $ (t p u t s e t a f 2) $ s c r i p t $ (t p u t sg r0) t o $ (t p u t s e t a f 1) $CSVFILE$ (t p u t sg r0)”
u p e r l ” $ s c r i p t ” −db ”$UDB” −c s v ”$CSVFILE” > / dev / n u l l
done

! / b i n / sh
RunOnePerl . sh

i f [$# != 2] ; t h e n
echo ”USAGE: $ (basename $0) u n d e r s t a n d−d a t a b a s e . udb u n d e r s t a n d−p e r l−s c r i p t . p l ”
echo ” Runs t h e P e r l s c r i p t f o r U n d e r s t a n d and adds a −csv command l i n e argument . ”
echo ” Aids i n u s i n g x a r g s t o speed up p r o c e s s i n g . ”
e x i t

f i

THISSCRIPT=” $0 ”
UDB=” $1 ”

109

PERLSCRIPT=” $2 ”
UDBBASE=$ (basename −s . udb ”$UDB”)
UDBDIR=$ (d i rname ”$UDB”)
PERLSCRIPTDIR=$ (d i rname ”$PERLSCRIPT”)

s c r i p t B a s e =$ (basename −s . p l ”$PERLSCRIPT”)
CSVFILE=” ${UDBDIR} / ${UDBBASE}−${ s c r i p t B a s e } . c sv ”
echo ” P r o c e s s i n g $ (t p u t s e t a f 1) $PERLSCRIPT$ (t p u t s g r 0) t o $ (t p u t s e t a f 2) $CSVFILE$ (t p u t s g r 0) ”
u p e r l ”$PERLSCRIPT” −db ”$UDB” −csv ”$CSVFILE” > / dev / n u l l

4. Merge CSV

The following script was used to merge multiple CSV files.
! / b i n / sh
MergeCsv . sh

i f [$# − l t 1] ; t h e n
echo ”USAGE: $ (basename $0) f i l e 1 . csv f i l e 2 . csv . . . ”
echo ” Merges two or more CSV f i l e s wi th t h e f i r s t columns b e i n g common keys ”
e x i t

f i

f u n c t i o n Merge () {

CSV1=$1
CSV2=$2

awk −F , −v F i l e 1 =$CSV1 −v F i l e 2 =$CSV2 ’
BEGIN {

Read i n t h e second f i l e and r e c o r d t h e header and t h e da ta
i n an a r r a y t h a t we can p u l l o u t l a t e r . We w i l l be c r o s s−
r e f e r e n c i n g t h e f i r s t columns as t h e key t o u n i t e t h e rows .
NeedHeaders1 = 1 ;
NeedHeaders2 = 1 ;
F2KeysCount = 0 ;
whi le ((g e t l i n e < F i l e 2) > 0) { # Reads each row o f t h e second f i l e

i f (NeedHeaders2){ # Look ing f o r t h e f i r s t row here
f o r (i = 2 ; i <= NF ; i ++){ # Loop t h r o u g h column t i t l e s

Headers2 [i] = $ i ; # Save t h e column t i t l e s
}
Headers2 [” c o u n t ”] = NF − 1 ; # Save how many da ta columns we have
NeedHeaders2 = 0 ; # Mark t h a t we are done w i t h h e a d e r s

} e l s e {
f 2 d a t a [$1 , 0] = $0 ; # Save t h e whole row
f o r (i = 2 ; i <= NF ; i ++){ # Loop t h r o u g h t h e columns o f da ta

f 2 d a t a [$1 , i] = $ i ; # Save t h e da ta i n a 2D a r r a y
}
F2Keys [$1] = $1 ; # Keep s e p a r a t e l i s t o f k e y s (f i r s t column)

We d e l e t e k e y s from t h i s as t h e y are used
t o s e e i f any k e y s appeared i n t h e second
f i l e b u t n o t i n t h e f i r s t .

}
} # end w h i l e
OFS=” , ”

}
{

Headers
i f (NeedHeaders1){ # Look ing f o r f i r s t row here

p r i n t f (”%s ” , $0) ; # P r i n t t h e whole CSV l i n e from f i l e 1

110

Headers1 [” c o u n t ”] = NF − 1 ; # S t o r e number o f columns which we
may need i f t h e r e were k e y s i n t h e
second f i l e t h a t do n o t show up here .

f o r (i = 2 ; i <= Headers2 [” c o u n t ”] + 1 ; i ++){ # Loop t h r o u g h columns o f f i l e 2
p r i n t f (” ,% s ” , Headers2 [i]) ; # Append column t i t l e s from f i l e 2

}
p r i n t f (”\n ”) ; # End o f row
NeedHeaders1 = 0 ; # Done w i t h column t i t l e s

} e l s e {

Data
p r i n t f (”%s ” , $0) ; # P r i n t t h e whole CSV l i n e from f i l e 1
f o r (i = 2 ; i <= Headers2 [” c o u n t ”] + 1 ; i ++){ # Loop t h r o u g h columns o f f i l e 2

p r i n t f (” ,% s ” , f 2 d a t a [$1 , i]) ; # Append da ta from f i l e 2
d e l e t e F2Keys [$1] ; # Remove from l i s t o f u n p r o c e s s e d f i l e 2 k e y s

}
p r i n t f (”\n ”) ; # End o f row

}
}
END {

Append k e y s t h a t were o n l y i n f i l e 2
f o r (key i n F2Keys){ # Loop t h r o u g h u n p r o c e s s e d f i l e 2 k e y s

p r i n t f (”%s ” , key) ; # W r i t e t h e key t o t h e f i r s t column
f o r (i = 2 ; i <= Headers1 [” c o u n t ”] + 1 ; i ++){ # Add b l a n k s t o a l l t h e columns f o r

p r i n t f (” , ”) ; # f i l e 1 t h a t d i d n o t have t h i s key .
}
f o r (i = 2 ; i <= Headers2 [” c o u n t ”] + 1 ; i ++){ # Loop over columns i n f i l e 2

p r i n t f (” ,% s ” , f 2 d a t a [key , i]) ; # Append a c t u a l da ta from f i l e 2
d e l e t e F2Keys [key] ; # Remove from l i s t o f u n p r o c e s s e d k e y s

}

}
}
’ $CSV1

}

CSVTEMP1=” $ (mktemp −t MergeCsv) ”
CSVTEMP2=” $ (mktemp −t MergeCsv) ”
trap ”rm −f ’$CSVTEMP1’ ’$CSVTEMP2’ ” 0 # EXIT
trap ”rm −f ’$CSVTEMP1’ ’$CSVTEMP2 ’ ; e x i t 1 ” 2 # INT
trap ”rm −f ’$CSVTEMP1’ ’$CSVTEMP2 ’ ; e x i t 1 ” 1 15 # HUP TERM

Merge a l l CSV f i l e s
whi le [” $1 ”] ; do

echo ” Adding $ (t p u t s e t a f 1) 1 (t p u t s g r 0) ” >&2
i f [−s ”$CSVTEMP1”] ; then

echo ”Merging two CSV f i l e s ”
Merge ”$CSVTEMP1” − < ” $1 ” > ”$CSVTEMP2” ;

e l s e
echo ” E s t a b l i s h i n g f i r s t CSV f i l e ”
c a t ” $1 ” > ”$CSVTEMP1”
c a t ” $1 ” > ”$CSVTEMP2”

f i
c a t ”$CSVTEMP2” > ”$CSVTEMP1”
s h i f t

done

c a t ”$CSVTEMP1”

111

B. SCRIPTS FOR CALCULATING AGILITY METRICS

The metrics can be calculated with command line tools such as grep and awk. There

is some risk of counting a line that is in a block comment (*...*\), but single line

comments (\\. . .) are excluded.

1. Lines with Includes, LI

Delta3D :
g rep −r osg merged−s r c−i n c | g rep ’ # i n c l u d e ’ | grep −v ’ / / ’ | wc −l

DMZ:
g rep −r osg f o u n d a t i o n f rameworks k e r n e l | g rep ’ # i n c l u d e ’ | grep −v ’ / / ’ | wc −l

2. Classes with Includes, CI

Delta3D :
g rep −r osg merged−s r c−i n c | g rep ’ # i n c l u d e ’ | awk −F : ’{ p r i n t $1 } ’ | \
sed ’ s / \ (. * \) \ . . * / \ 1 / ’ | s o r t −u | g rep −v ’ / / ’ | wc −l

DMZ:
g rep −r osg f o u n d a t i o n f rameworks k e r n e l | g rep ’ # i n c l u d e ’ | \
awk −F : ’{ p r i n t $1 } ’ | sed ’ s / \ (. * \) \ . . * / \ 1 / ’ | s o r t −u | g rep −v ’ / / ’ | wc −l

3. Lines with References, LR

Delta3D :
g rep −r −−i n c l u d e =* . cpp ’ osg [a−zA−Z] * : : ’ merged−s r c−i n c | g rep −v ’ / / ’ | wc −l

DMZ:

g rep −r −−i n c l u d e =* . cpp ’ osg [a−zA−Z] * : : ’ f o u n d a t i o n f rameworks k e r n e l | g rep −v ’ / / ’ | wc −l

4. Classes with References, CR

Delta3D :
g rep −r −−i n c l u d e =* . cpp ’ osg [a−zA−Z] * : : ’ merged−s r c−i n c | g rep −v ’ / / ’ | \
awk −F : ’{ p r i n t $1 } ’ | s o r t −u | wc −l

112

DMZ:
g rep −r −−i n c l u d e =* . cpp ’ osg [a−zA−Z] * : : ’ f o u n d a t i o n f rameworks k e r n e l | \
g rep −v ’ / / ’ | awk −F : ’{ p r i n t $1 } ’ | s o r t −u | wc −l

113

THIS PAGE INTENTIONALLY LEFT BLANK

114

LIST OF REFERENCES

Agile Alliance. (2011). Agile alliance home page. Available from http://www.agilealliance
.org/

Agrawal, R., Bayardo, R. J., Gruhl, D., & Papadimitriou, S. (2002). Vinci: A service-
oriented architecture for rapid development of web applications. Computer Net-
works, 39(5), 523–539.

Allen, E., & Khoshgoftaar, T. (1999). Measuring coupling and cohesion: an information-
theory approach. Software Metrics Symposium, 1999. Proceedings. Sixth Interna-
tional, 119–127.

Ambler, S. (1998). A realistic look at object-oriented reuse. Available from http://drdobbs
.com/architecture-and-design/184415594

Anvaari, M., & Jansen, S. (2010). Evaluating architectural openness in mobile software
platforms. In Fourth european conference on software architecture (pp. 85–92). New
York, New York, USA: ACM.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software Engineering, 22(10),
751–761.

Beck, K., Cockburn, A., Jeffries, R., & Highsmith, J. (2001). Manifesto for agile software
development. Available from http://agilemanifesto.org/

Becker, G. S. (1965). A theory of the allocation of time. The Economic Journal, 75(299),
pp. 493–517.

Benkler, Y. (2006). The wealth of networks: How social production transforms markets
and freedom. Yale University Press.

Biggerstaff, T., & Richter, C. (1987). Reusability framework, assessment, and directions.
IEEE Software, 4(2), 41–49.

Briand, L. C., Daly, J., Porter, V., & Wust, J. (1998). A comprehensive empirical validation
of design measures for object-oriented systems. Software Metrics Symposium, 246–
257.

Briand, L. C., Daly, J., & Wust, J. (1999). A unified framework for coupling measurement
in object-oriented systems. IEEE Transactions on Software Engineering, 25(1), 91–
121.

115

Briand, L. C., Morasca, S., & Basili, V. R. (1996). Property-based software engineering
measurement. Software Engineering, IEEE Transactions on, 22(1), 68–86.

Brutzman, D., Zyda, M., Pullen, J. M., & Morse, K. L. (2002). Extensible modeling and
simulation framework (xmsf) challenges for web-based modeling and simulation.
Strategic Opportunities Symposium.

Cartwright, M., & Shepperd, M. (2000). An empirical investigation of an object-oriented
software system. IEEE Trans. Softw. Eng., 26(8), 786–796.

Champeaux, D. de, Lea, D., & Faure, P. (1992). The process of object-oriented design.
OOPSLA ’92: conference proceedings on Object-oriented programming systems,
languages, and applications.

Chidamber, S., Darcy, D., & Kemerer, C. (1998). Managerial use of metrics for object-
oriented software: an exploratory analysis. Software Engineering, IEEE Transactions
on, 24(8), 629–639.

Chidamber, S., & Kemerer, C. (1991). Towards a metrics suite for object oriented design.
OOPSLA ’91: Conference proceedings on Object-oriented programming systems,
languages, and applications.

Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented design.
Software Engineering, IEEE Transactions on, 20(6), 476–493.

Cho, E. S., Kim, M. S., & Kim, S. D. (2007). Component metrics to measure compo-
nent quality. In Eighth asia-pacific software engineering conference (pp. 419–426).
Macao, China: IEEE Comput. Soc.

Clinger, W., & Cohen, W. (1996). S.1124 national defense authorization act for fiscal year
1996 (Clinger-Cohen act).

Cohen, D., Lindvall, M., & Costa, P. (2004). An introduction to agile methods. Advances
in Computers, 62, 1–66.

Curfman, B. (1993). Library development handbook. central archive for reusable defense
software (cards). Electronic Systems Center Air Force Materiel Command.

Davis, P. K., & Anderson, R. H. (2004). Improving the composability of dod models
and simulations. The Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology, 1(1), 5–17.

Defense Acquisition University. (2010). Defense acquisition guidebook. Defense Acqui-
sition University.

Department of Defense. (2003). DoD directive 5000.01 the defense acquisition system.

116

Department of Defense. (2008). DoD instruction 5000.02 operation of the defense acqui-
sition system.

Department of Defense. (2011). DoD open source software (oss) faq. Available from
http://cio-nii.defense.gov/sites/oss/Open Source Software (OSS) FAQ.htm

Devanbu, P., Brachman, R., & Selfridge, P. G. (1991). Lassie: a knowledge-based software
information system. Communications of the ACM, 34(5), 34–49.

Dove, R. (1994). Agility essay #1: The meaning of life and the meaning of agility. Available
from http://www.parshift.com/Essays/essay001.htm

Economist. (2005). Mashing the web. Available from http://www.economist.com/node/
4368150

Edwards, M. A. (2005). Requirement for open architecture (OA) implementation. Deputy
Chief of Naval Operations Memorandum.

Evertsz, R., & Ritter, F. E. (2009). Populating VBS2 with realistic virtual actors. In
Proceedings of the 18th conference on behavior representation in modeling and sim-
ulation (pp. 1–8). Sundance, UT.

Feig, N. (2008). Pursuing the promise of SOA. Available from http://www.banktech.com/
management-strategies/208701020

Fong, G. (2004). Proceedings of the 2004 ACM SIGGRAPH international conference
on virtual reality continuum and its applications in industry. In Proceedings of the
2004 ACM SIGGRAPH international conference on virtual reality continuum and its
applications in industry (pp. 269–272). New York: ACM Press.

Gamma, E., Helm, R., Johnson, R. E., & Vlissides, J. (1995). Design patterns: Elements
of reusable object-oriented software. Reading, MA: Addison-Wesley.

Garlan, D., Allen, R., & Ockerbloom, J. (2009). Architectural mismatch: Why reuse is
still so hard. Software, IEEE, 26(4), 66–69.

Gimenes, R., Silva, D. C., Reis, L. P., & Oliveira, E. (2008). Flight simulation environments
applied to agent-based autonomous UAVs. In International conference on enterprise
information systems (pp. 243–246).

Haefliger, S., Krogh, G. von, & Spaeth, S. (2008). Code reuse in open source software.
Management Science, 54(1), 180–193.

Halstead, M. H. (1977). Elements of software science (operating and programming systems
series). New York, NY, USA: Elsevier Science Ltd.

Henry, S., & Kafura, D. (1984). The evaluation of software systems’ structure using
quantitative software metrics. Software: Practice and Experience.

117

Herz, J. C., Lucas, M., & Scott, J. (2006). Open technology development roadmap plan.
Available from http://www.acq.osd.mil/jctd/articles/OTDRoadmapFinal.pdf

Hippel, E. von. (2005). Democratizing innovation. Cambridge, MA: The MIT Press.

Hitz, M., & Montazeri, B. (1995). Measuring coupling and cohesion in object-oriented
systems. In Proc. intl. sym. on applied corporate computing.

Ismail, S., Wan-Kadir, W. M. N., Saman, Y. M., & Mohd-Hashim, S. Z. (2008). A
review on the component evaluation approaches to support software reuse. In 2008
international symposium on information technology (pp. 1–6). IEEE.

Jansen, S., Brinkkemper, S., Hunink, I., & Demir, C. (2008). Pragmatic and opportunistic
reuse in innovative start-up companies. IEEE Software, 25(6), 42–49.

Kearney, J. K., Sedlmeyer, R. L., Thompson, W. B., Gray, M. A., & Adler, M. A. (1986).
Software complexity measurement. Communications of the ACM, 29(11).

Kim, Y., & Stohr, E. (1992). Software reuse: issues and research directions. In System
sciences, 1992. proceedings of the twenty-fifth Hawaii international conference on
(pp. 612–623).

Kitchenham, B. (2010). What’s up with software metrics? a preliminary mapping study.
Journal of Systems and Software, 83, 37–51.

Krygiel, A. J. (1999). Behind the wizard’s curtain: An integration environment for a system
of systems. Washington, D.C.: C4ISR Cooperative Research Program.

Lanman, J. T., & Proctor, M. D. (2009). Governance of data initialization for service ori-
ented architecture-based military simulation and command and control federations.
The Journal of Defense Modeling and Simulation: Applications, Methodology, Tech-
nology, 6(1), 5–16.

Lewis, J. (2006). A common component-based software architecture for military and
commercial pc-based virtual simulation. Unpublished doctoral dissertation, College
of Engineering and Computer Science University of Central Florida.

Lewis, M., & Jacobson, J. (2002). Game engines in scientific research. Communications
of the ACM, 45, 27–31.

Li, W., & Henry, S. (1993a). Maintenance metrics for the object oriented paradigm. Soft-
ware Metrics Symposium, 1993. Proceedings., First International, 52–60.

Li, W., & Henry, S. (1993b). Object-oriented metrics that predict maintainability. Journal
of Systems and Software, 23(2), 111–122.

Lynn III, W. J. (2010). The pentagon’s cyberstrategy. foreignaffairs.com.

118

Martin, R. (1994). OO design quality metrics. Self Published.

Maxwell, E. (2006). Open standards, open source, and open innovation: Harnessing the
benefits of openness. Innovations: Technology, Governance, Globalization, 1(3),
119–176.

McCabe, T. J. (1976). A complexity measure. Software Engineering, IEEE Transactions
on, SE-2(4), 308–320.

McDowell, P., Darken, R., Sullivan, J., & Johnson, E. (2006). Delta3D: A complete open
source game and simulation engine for building military training systems. The Jour-
nal of Defense Modeling and Simulation: Applications, Methodology, Technology,
3(3), 143–154.

McIlroy, M. D. (1968). Mass produced software components. Proceedings of the NATO
Software Conference, 79–85.

Mili, H., Mili, F., & Mili, A. (1995). Reusing software: issues and research directions.
IEEE Transactions on Software Engineering, 21(6), 528–562.

Mills, E. E. (1988). Software metrics SEI curriculum module SEI-CM-12-1.1. Seattle
University: Carnegie Mellon University Software Engineering Institute.

Morad, S., & Kuflik, T. (2005). Conventional and open source software reuse at orbotech
– an industrial experience. IEEE International Conference on Software - Science,
Technology & Engineering (SwSTE’05), 110–117.

Müller, T. (2011). How to choose an free and open source integrated library system. OCLC
Systems & Services: International digital library perspectives, 27(1), 57–78.

National Research Council. (2005). Modeling and simulation in manufacturing and de-
fense systems acquisition. National Academy of Sciences.

Office of the Under Secretary of Defense. (2002). DoD 5000.2-R mandatory procedures
for major acquisition defense programs (MDAPS) and major automated information
systems (MAIS) acquisition programs. U. S. Department of Commerce.

Office of the Under Secretary of Defense. (2006). Department of defense acquisition
modeling and simulation master plan. Office of the Under Secretary of Defense
(Acquisition, Technology and Logistcis).

Offutt, J., Abdurazik, A., & Schach, S. (2008). Quantitatively measuring object-oriented
couplings. Software Quality Control, 16(4).

Olague, H. M., Etzkorn, L. H., Gholston, S., & Quattlebaum, S. (2007). Empirical vali-
dation of three software metrics suites to predict fault-proneness of object-oriented
classes developed using highly iterative or agile software development processes.

119

IEEE Trans. Softw. Eng., 33(6), 402–419.

Ommering, R. van. (2005). Software reuse in product populations. IEEE Trans. Softw.
Eng., 31(7), 537–550.

Open Source Initiative OSI. (2011). The open source definition. Available from http://
opensource.org/docs/osd

Open Systems Joint Task Force. (2004). Program manager’s guide. Open Systems Joint
Task Force.

OSGForum. (2011). Openscenegraph forum – ive file format. Available from http://
forum.openscenegraph.org/viewtopic.php?t=7878

Oswalt, I. (1993). Current applications, trends, and organizations in U.S. military simula-
tion and gaming. Simulation & Gaming, 24(2), 153–189.

Poulin, J. S. (2006). The business case for software reuse: Reuse metrics, economic
models, organizational issues, and case studies. Lockheed Martin Distribution Tech-
nologies.

Prather, R. E. (1984). An axiomatic theory of software complexity measure. The Computer
Journal, 27, 340–347.

Qingqing, Z., & Xinke, L. (2009). Complexity metrics for service-oriented systems. In
2009 second international symposium on knowledge acquisition and modeling (pp.
375–378). IEEE.

Qumer, A., & Henderson-Sellers, B. (2006a). Comparative evaluation of XP and Scrum
using the 4D analytical tool (4-DAT). In European and mediterranean conference on
information systems. Costa Blanca, Spain.

Qumer, A., & Henderson-Sellers, B. (2006b). Measuring agility and adoptability of agile
methods: A 4-dimensional analytical tool. IADIS International Conference Applied
Computing, 503–507.

Ragab, S. R., & Ammar, H. H. (2010). Object oriented design metrics and tools: A survey.
In 7th international conference on informatics and systems (pp. 1–7). Cairo, Egypt.

Rosenberg, L. H., & Hyatt, L. E. (1995). Software quality metrics for object-oriented
environments: A report of SATC’s research on OO metrics (Tech. Rep.).

Schwartz, R., & Phipps, S. (2011). Floss weekly podcast: Open source software at the
department of defense. Available from http://twit.tv/floss160

Scott, J. M. (2010). Pentagon is losing the softwar(e). Available from http://www
.defensenews.com/story.php?i=4677662

120

Scott, J. M. (2011). Open technology development (odt): Lessons learned and best prac-
tices for military software. Office of the DoD CIO.

Sharble, R. C., & Cohen, S. S. (1993). The object-oriented brewery. SIGSOFT Softw. Eng.
Notes, 18(2), 60–73.

Sharma, A., & Kumar, R. (2007). Managing component-based systems with reusable
components. International Journal of Computer Science and Security, 1(2), 52–57.

SimCentric. (2011). Overview: VBS2Fusion. Available from http://www.simcentric.com
.au/products/vbs2fusion/overview/

Stallman, R. (2010). Why open source misses the point of free software. Available from
http://www.gnu.org/philosophy/open-source-misses-the-point.html

Tang, M.-H., Kao, M.-H., & Chen, M.-H. (1999). Proceedings sixth international software
metrics symposium (cat. no.pr00403). In Metrics ’99: Sixth international symposium
on software metrics (pp. 242–249). IEEE Comput. Soc.

Tangney, J. (2009). Synthetic environments for assessment. NPS Guest Lecture.

TechWeb. (2008). The state of service-oriented architecture. Available from http://www
.slideshare.net/techweb08/techweb-state-of-soa-research/download

Therriault, R. W., & Van Nederveen, K. E. (1994). Industry versus DoD: A compara-
tive study of software reuse. Unpublished doctoral dissertation, Naval Postgraduate
School, Monterey.

Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire,
CT: Graphics Press.

Updegrove, A. (2005). Consortiuminfo.org consortium standards bulletin- march 2005.
Available from http://www.consortiuminfo.org/bulletins/mar05.php#feature

U.S. Air Force. (2004). Air force instruction 33-114. U.S. Air Force.

Vessey, I., & Weber, R. (1984). Research on structured programming: An empiricist’s
evaluation. Software Engineering, IEEE Transactions on, SE-10(4), 397–407.

Wand, Y., & Weber, R. (1990). An ontological model of an information system. Software
Engineering, IEEE Transactions on, 16(11), 1282–1292.

Washizaki, H., Yamamoto, H., & Fukazawa, Y. (2003). A metrics suite for measuring
reusability of software components. 5th International Workshop on Enterprise Net-
working and Computing in Healthcare Industry, 211–223.

WaughPartners, & OSSWatch. (2007). The foundations of open. Available from http://
pipka.org/blog/2008/07/23/the-foundations-of-openness/

121

Wennergren, D. M. (2009). Clarifying guidance regarding open source software (OSS).
Department of Defense Chief Information Officer.

Weyuker, E. J. (1988). Evaluating software complexity measures. Software Engineering,
IEEE Transactions on, 14(9), 1357–1365.

White, I. (1994). Using the booch method: A rational approach. Redwood City, CA, USA:
Benjamin-Cummings Publishing Co., Inc.

Wichmann, T. (2002). Free/libre open source software: Survey and study (Tech. Rep.).
Berlecon Research.

Wilkes, M. V., & Renwick, W. (1949). The EDSAC – an electronic calculating machine.
Journal of Scientific Instruments and of Physics in Industry, 26, 385–391.

Xenos, M., Stavrinoudis, D., Zikouli, K., & Christodoulakis, D. (2000). Object-oriented
metrics – a survey. In Federation of european software measurement association
2000 (pp. 1–10). Madrid.

Xu, T., Qian, K., & He, X. (2006). Service oriented dynamic decoupling metrics. In 2006
international conference on semantic web and web services (pp. 1–7). Las Vegas.

Yilmaz, L. (2004). On the need for contextualized introspective models to improve reuse
and composability of defense simulations. The Journal of Defense Modeling and
Simulation: Applications, Methodology, Technology, 1(3), 141–151.

Young Jr., J. J. (2004). Naval open architecture scope and responsibilities. Assistant
Secretary of the Navy Memorandum.

122

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Col. David Gibson
Department of Computer Science
U.S. Air Force Academy
Colorado Springs, Colorado

4. Dr. Ken Doerr
Graduate School of Business and Public Policy
Naval Postgraduate School
Monterey, California

5. Dr. John Tangney
ONR341 Division Director

6. LCDR Joseph Cohn, PhD
ONR341 Deputy Division Director

7. James O’Bryon
The O’Bryon Group
Bel Air, Maryland

8. Dr. Tom West
Oregon State University
Corvallis, Oregon

123

	Cover Page
	SF 298
	Signatures
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Acknowledgements
	I Introduction
	A Thesis and Problem Statements
	B Background
	C Organization of this Document

	II Literature Review
	A Openness
	1 What is Openness?
	a Standards
	b Licensing
	c Innovation

	2 Why Openness is Important
	a Benefits
	b Mandates

	3 How Openness is Measured
	4 Summary of Openness

	B Reuse
	1 What is Reuse
	2 Why Reuse is Important
	a Benefits
	b Mandates

	3 How Reuse is Measured
	4 Summary of Reuse

	C Agility
	1 What is Agility
	2 Why Agility is Important
	a Benefits
	b Mandates

	3 How Agility is Measured
	4 Summary of Agility

	D Summary of Literature Review

	III Openness
	A Developing the Openness Model
	1 Layers and Operations
	2 Issues
	3 Criteria
	a Standards
	b Licensing
	c Innovation
	d Summary of Criteria

	4 Model for Assessing Openness
	5 Weights for User Assigned Value Systems

	B Study 1: Assessing Openness
	1 Methodology
	2 Delta3D
	3 DMZ
	4 Identifying Software Layers
	5 Applying Criteria
	a External Applications
	b Internal Applications
	c Middleware
	d Kernel

	6 Results
	7 Insights Gained
	a External Applications
	b Uniformity Across Operations
	c Open Source License

	C Summary

	IV Reuse
	A Developing the Reuse Model
	1 Complexity, Coupling, and Cohesion Metrics
	a Weighted Methods per Class
	b Depth of Inheritance Tree
	c Number of Children
	d Coupling between Objects
	e Response for a Class
	f Lack of Cohesion in Methods

	2 Empirical Evaluation of Metrics
	3 Criteria for Metrics
	a Weighted Method Complexity
	b Depth of Inheritance Tree
	c Number of Children
	d Coupling between Objects
	e Response Set for a Class
	f Lack of Cohesion in Methods
	g Summary of Reuse Criteria

	4 Model for Assessing Reuse
	5 Weights for User Assigned Value Systems

	B Study 2: Assessing Reuse
	1 Methodology
	2 Calculating the Metrics
	3 Applying the Criteria
	4 Results
	a Weighted Methods per Class
	b Depth of Inheritance Tree
	c Number of Children
	d Coupling between Objects
	e Response for a Class
	f Top 100 Classes

	C Summary

	V Agility
	A Developing the Agility Model
	1 Measuring Agility
	a Included Files
	b References

	2 Model for Assessing Agility

	B Study 3: Assessing Agility
	1 Methodology
	2 Results
	a Dramatic Differences
	b Includes vs. References
	c Absolutes vs. Percents

	C Summary

	VI Conclusion
	A Review
	B Discussion
	1 Choice of Models
	2 Additional Agility Metric
	3 Uniformity of Design
	4 Helping the Three Program Managers

	C Conclusions
	D Future Work

	A Appendix
	A Scripts for Calculating Reuse Metrics
	1 Parent Script
	2 Converting Reports
	3 Running Perl Scripts
	4 Merge CSV

	B Scripts for Calculating Agility Metrics
	1 Lines with Includes, LI
	2 Classes with Includes, CI
	3 Lines with References, LR
	4 Classes with References, CR

	LIST OF REFERENCES
	List of References

	INITIAL DISTRIBUTION LIST
	Initial Distribution List

